mirror of
https://github.com/Theaninova/Bampy.git
synced 2025-12-11 03:56:17 +00:00
feat: stuff
This commit is contained in:
@@ -5,23 +5,23 @@
|
||||
import { useLoader } from '@threlte/core';
|
||||
import {
|
||||
BufferGeometry,
|
||||
Float32BufferAttribute,
|
||||
MathUtils,
|
||||
Vector3,
|
||||
Mesh,
|
||||
Points,
|
||||
Triangle,
|
||||
DoubleSide,
|
||||
Sphere
|
||||
Color,
|
||||
Box3,
|
||||
Matrix4
|
||||
} from 'three';
|
||||
import { degToRad } from 'three/src/math/MathUtils.js';
|
||||
import { MeshBVH } from 'three-mesh-bvh';
|
||||
import { ExtendedTriangle, MeshBVH } from 'three-mesh-bvh';
|
||||
import type { Readable } from 'svelte/store';
|
||||
import type { HitPointInfo } from 'three-mesh-bvh';
|
||||
import { mergeGeometries } from 'three/examples/jsm/utils/BufferGeometryUtils.js';
|
||||
|
||||
export let buildSurface = [300, 300, 300];
|
||||
export let layerHeight = 0.2;
|
||||
export let nozzleSize = 0.4;
|
||||
export let tolerance = 0.1;
|
||||
export let tolerance = 0.005;
|
||||
|
||||
export let maxNonPlanarAngle = MathUtils.degToRad(20);
|
||||
export let bedNormal = new Vector3(0, 0, 1);
|
||||
@@ -30,33 +30,16 @@
|
||||
const stl: Readable<BufferGeometry> = useLoader(STLLoader).load('/benchy.stl');
|
||||
|
||||
let mesh: Mesh;
|
||||
let surface: BufferGeometry | undefined;
|
||||
let layers: BufferGeometry[] = [];
|
||||
|
||||
$: if ($stl) {
|
||||
//slice(mesh);
|
||||
// we don't really care about the faces, since the vertices bound the area anyways
|
||||
// which is the only thing that matters when creating non-planar slices.
|
||||
// sort vertices by z, then x, then y in separate index arrays
|
||||
// add face index that maps an index/vertex to multiple faces (indices)
|
||||
// on each layer get the closest vertex in z, then find the next closest and
|
||||
// determine the angle between them. If it's less than the maxNonPlanarAngle
|
||||
// add it to the current slice and set it to consumed, if not
|
||||
|
||||
// build bvh for the mesh, query the clostest point.
|
||||
// only store the indices for each slice.
|
||||
// query the mesh bvh for the closest point while discarding points not
|
||||
// in the slice. Keep track of candidates while querying the bvh.
|
||||
|
||||
// need to build bvh live while generating the slices, so angle checks can be done with
|
||||
// respect to the closest point in the slice
|
||||
|
||||
const bvh = new MeshBVH($stl);
|
||||
const positions = bvh.geometry.getAttribute('position');
|
||||
const index = bvh.geometry.index!;
|
||||
const positions = $stl.getAttribute('position');
|
||||
const index = $stl.index!;
|
||||
|
||||
const qualifyingTriangles = Array.from({ length: index.count / 3 }, () => false);
|
||||
let qualifyingTrianglesCount = 0;
|
||||
const triangle = new Triangle();
|
||||
const triangle = new ExtendedTriangle();
|
||||
const normal = new Vector3();
|
||||
for (let i = 0; i < index.count / 3; i++) {
|
||||
triangle.setFromAttributeAndIndices(
|
||||
@@ -73,8 +56,6 @@
|
||||
}
|
||||
}
|
||||
|
||||
const spheres = Array.from({ length: 3 }, () => new Sphere());
|
||||
const vectors = Array.from({ length: 3 }, () => new Vector3());
|
||||
const surfaces: number[][] = [];
|
||||
while (qualifyingTrianglesCount > 0) {
|
||||
const faceIndex = qualifyingTriangles.findIndex((it) => it);
|
||||
@@ -83,19 +64,21 @@
|
||||
const surface = [faceIndex];
|
||||
let cursor = 0;
|
||||
while (cursor < surface.length) {
|
||||
for (let i = 0; i < 3; i++) {
|
||||
vectors[i].fromBufferAttribute(positions, index.array[surface[cursor] * 3 + i]);
|
||||
spheres[i].set(vectors[i], tolerance);
|
||||
}
|
||||
triangle.setFromAttributeAndIndices(
|
||||
positions,
|
||||
index.array[surface[cursor] * 3],
|
||||
index.array[surface[cursor] * 3 + 1],
|
||||
index.array[surface[cursor] * 3 + 2]
|
||||
);
|
||||
|
||||
bvh.shapecast({
|
||||
intersectsBounds(box, _isLeaf, _score, _depth, _nodeIndex) {
|
||||
return spheres.some((sphere) => box.intersectsSphere(sphere));
|
||||
return triangle.intersectsBox(box);
|
||||
},
|
||||
intersectsTriangle(triangle, triangleIndex, _contained, _depth) {
|
||||
intersectsTriangle(target, triangleIndex, _contained, _depth) {
|
||||
if (
|
||||
qualifyingTriangles[triangleIndex] &&
|
||||
spheres.some((sphere) => triangle.intersectsSphere(sphere))
|
||||
target.distanceToTriangle(triangle) < tolerance
|
||||
) {
|
||||
qualifyingTriangles[triangleIndex] = false;
|
||||
qualifyingTrianglesCount--;
|
||||
@@ -106,82 +89,23 @@
|
||||
|
||||
cursor++;
|
||||
}
|
||||
surfaces.push(
|
||||
surface.flatMap((face) => [
|
||||
index.array[face * 3],
|
||||
index.array[face * 3 + 1],
|
||||
index.array[face * 3 + 2]
|
||||
])
|
||||
);
|
||||
surfaces.push(surface);
|
||||
}
|
||||
|
||||
console.log(surfaces);
|
||||
|
||||
surface = new BufferGeometry();
|
||||
surface.setAttribute('position', positions);
|
||||
surface.setAttribute('normal', $stl.getAttribute('normal'));
|
||||
surface.setIndex(surfaces[4]);
|
||||
|
||||
/*const hull: [position: Vector3, index: number][][] = [];
|
||||
let limit = 0;
|
||||
while (points.length > 0) {
|
||||
const consumed = points.map(() => false);
|
||||
const currentHull: [position: Vector3, index: number][] = [[points[0][0], 0]];
|
||||
consumed[0] = true;
|
||||
for (let i = 1; i < points.length; i++) {
|
||||
inner: do {
|
||||
const b = points[i][0].clone().sub(currentHull[currentHull.length - 1][0]);
|
||||
const angle = Math.asin(
|
||||
Math.abs(b.clone().dot(bedNormal)) /
|
||||
(Math.abs(b.length()) * Math.abs(bedNormal.length()))
|
||||
);
|
||||
if (angle <= maxNonPlanarAngle) {
|
||||
currentHull.push([points[i][0], points[i][2]]);
|
||||
consumed[i] = true;
|
||||
break inner;
|
||||
} else if (points[i][0].z < currentHull[currentHull.length - 1][0].z) {
|
||||
consumed[currentHull.pop()![1]] = false;
|
||||
if (currentHull.length === 0) {
|
||||
currentHull.push([points[i][0], points[i][2]]);
|
||||
consumed[i] = true;
|
||||
break inner;
|
||||
}
|
||||
} else {
|
||||
break inner;
|
||||
}
|
||||
} while (true);
|
||||
layers = surfaces.map((surface) => {
|
||||
const geometry = new BufferGeometry();
|
||||
geometry.setAttribute('position', positions);
|
||||
geometry.setAttribute('normal', $stl.getAttribute('normal'));
|
||||
const indices: number[] = Array.from({ length: surface.length * 3 });
|
||||
for (let i = 0; i < surface.length; i++) {
|
||||
const pos = surface[i] * 3;
|
||||
indices[i * 3] = $stl.index!.array[pos];
|
||||
indices[i * 3 + 1] = $stl.index!.array[pos + 1];
|
||||
indices[i * 3 + 2] = $stl.index!.array[pos + 2];
|
||||
}
|
||||
|
||||
points = points.filter((_, j) => !consumed[j]);
|
||||
hull.push(currentHull);
|
||||
if (limit++ > 100) break;
|
||||
}
|
||||
console.log(hull);*/
|
||||
}
|
||||
|
||||
async function slice(mesh: Mesh) {
|
||||
const { World, ColliderDesc, Ray } = await import('@dimforge/rapier3d');
|
||||
console.log(mesh.geometry.getAttribute('indices'));
|
||||
|
||||
const positions = mesh.geometry.getAttribute('position');
|
||||
const collider = ColliderDesc.trimesh(
|
||||
new Float32Array(positions.array),
|
||||
new Uint32Array(
|
||||
mesh.geometry.index?.array ?? Array.from({ length: positions.count }, (_, i) => i)
|
||||
)
|
||||
);
|
||||
collider.setTranslation(mesh.position.x, mesh.position.y, mesh.position.z);
|
||||
collider.setRotation(mesh.quaternion);
|
||||
collider.shape;
|
||||
const rayNormal = new Vector3(0, 0, 1);
|
||||
const shapePos = new Vector3(0, 0, 0);
|
||||
const shapeRot = { x: 0, y: 0, z: 0, w: 0 };
|
||||
console.log(((buildSurface[0] / nozzleSize) * buildSurface[1]) / nozzleSize);
|
||||
for (let x = 0; x < buildSurface[0]; x += nozzleSize) {
|
||||
for (let y = 0; y < buildSurface[1]; y += nozzleSize) {
|
||||
// collider.shape.castRay(new Ray({ x, y, z: 0 }, rayNormal), shapePos, shapeRot, 20, false);
|
||||
}
|
||||
}
|
||||
geometry.setIndex(indices);
|
||||
return geometry;
|
||||
});
|
||||
}
|
||||
</script>
|
||||
|
||||
@@ -202,11 +126,11 @@
|
||||
gridSize={[buildSurface[0], buildSurface[1]]}
|
||||
/>
|
||||
|
||||
{#if surface}
|
||||
{#each layers as surface}
|
||||
<T.Mesh geometry={surface}>
|
||||
<T.MeshNormalMaterial side={DoubleSide} />
|
||||
<T.MeshMatcapMaterial color={new Color(Math.random() * 0xffffff)} side={DoubleSide} />
|
||||
</T.Mesh>
|
||||
{/if}
|
||||
{/each}
|
||||
|
||||
{#if $stl && false}
|
||||
<T.Mesh geometry={$stl} bind:ref={mesh}>
|
||||
|
||||
11
src/polyfill-types.d.ts
vendored
Normal file
11
src/polyfill-types.d.ts
vendored
Normal file
@@ -0,0 +1,11 @@
|
||||
import { MeshBVH, computeBoundsTree, disposeBoundsTree } from 'three-mesh-bvh';
|
||||
|
||||
declare module 'three' {
|
||||
export interface BufferGeometry {
|
||||
boundsTree?: MeshBVH;
|
||||
computeBoundsTree: typeof computeBoundsTree;
|
||||
disposeBoundsTree: typeof disposeBoundsTree;
|
||||
}
|
||||
}
|
||||
|
||||
export {};
|
||||
5
src/polyfills.ts
Normal file
5
src/polyfills.ts
Normal file
@@ -0,0 +1,5 @@
|
||||
import { BufferGeometry } from 'three';
|
||||
import { computeBoundsTree, disposeBoundsTree } from 'three-mesh-bvh';
|
||||
|
||||
BufferGeometry.prototype.computeBoundsTree = computeBoundsTree;
|
||||
BufferGeometry.prototype.disposeBoundsTree = disposeBoundsTree;
|
||||
1
src/routes/+layout.ts
Normal file
1
src/routes/+layout.ts
Normal file
@@ -0,0 +1 @@
|
||||
import '../polyfills.js';
|
||||
Reference in New Issue
Block a user