40 Commits

Author SHA1 Message Date
Rafi Khan
bc13f66296 bumped version in README 2017-09-23 21:06:29 -04:00
Rafi Khan
7cad31cbb1 Merge branch 'LarsWH-master' 2017-09-23 21:04:24 -04:00
Rafi Khan
bdb9f1c1f5 Added support for RC5 extended
Credits: https://github.com/LarsWH
Excerpt from PR:
```
Hi,

I added support for 'RC5 extended' in order to make this project:
https://www.instructables.com/id/Remote-Control-for-Lava-mMotion-Swing-Mounting-Bra/

The modification is working nicely in this single application. It has
not been tested elsewhere.

(I am new to Git and this is my first pull request ever. So please
excuse me if I have messed something up)

Kind regards,
Lars
```

Merged #522
2017-09-23 21:03:07 -04:00
Rafi Khan
71f6daca4f Revert "Merge pull request #519 from PaulStoffregen/master"
This reverts commit 20a4d97f61, reversing
changes made to 47aadf559d.
2017-09-14 22:13:50 -04:00
Rafi Khan
2b3188e40a Merge branch 'master' of https://github.com/z3t0/Arduino-IRremote 2017-09-14 21:57:46 -04:00
Rafi Khan
d719c27f95 Changed default send pin on ATmega32u4 from 13 to 9
The reason for this change is that I was informed by a community
member that the Pro Micro board does not have the default pin 13. This
causes many issues for beginners that are not familiar with the inner
workings of the library. However, I am concerned about this being a
breaking change. If there are serious issues I may just end up adding
a tutorial in the FAQ for beginners, informing them how they may
change the default pins.
2017-09-14 21:57:01 -04:00
Rafi Khan
20a4d97f61 Merge pull request #519 from PaulStoffregen/master
Fix minor compiler warnings in examples
2017-09-09 17:53:45 -06:00
PaulStoffregen
1154607b69 Fix minor compiler warnings in examples 2017-09-04 20:48:37 -07:00
Rafi Khan
47aadf559d Update Contributors.md (#488) 2017-07-24 14:51:03 -06:00
Rafi Khan
eb7a0bee7d #481 note (#484) 2017-07-01 21:53:37 -07:00
Marc MERLIN
18f12d3aff Add FAQ on mixing IR and neopixels (#451)
* Add FAQ on mixing IR and neopixels

As requested in https://github.com/z3t0/Arduino-IRremote/issues/435

* Update README.md
2017-04-22 20:44:19 -06:00
Rafi Khan
f0aa48a4d1 Merge pull request #436 from marcmerlin/patch-1
Added pointer for ESP8266 fork
2017-04-10 14:05:36 -06:00
Marc MERLIN
691ea5bc53 Added pointer for ESP8266 fork
As requested in https://github.com/z3t0/Arduino-IRremote/issues/400
2017-04-09 19:55:49 -07:00
Rafi Khan
e0c2649b9f Merge pull request #425 from marcmerlin/master
Added ESP32 IR receive support (IRsend not implemented yet).
2017-04-01 12:55:05 -06:00
Marc MERLIN
419c948c29 Fixed rev to 2.3.3 and added info on timer used. 2017-04-01 08:32:37 -07:00
Marc MERLIN
9133814e60 Rev'ed to 2.2.4. 2017-03-31 23:10:07 -07:00
Marc MERLIN
3875097df9 Merge branch 'master' of github.com:marcmerlin/Arduino-IRremote 2017-03-31 22:33:16 -07:00
Marc MERLIN
88b294a0cd change no-op defines from '1' to ''. 2017-03-31 22:32:48 -07:00
Marc MERLIN
ffdb6081ae Merge branch 'master' into master 2017-03-31 22:04:36 -07:00
Marc MERLIN
6b8f2bdbfc move comment about 'or else' chips that use TIMER2. 2017-03-31 22:01:31 -07:00
Marc MERLIN
eae9de4307 Cleaned up ESP32 integration, reverted ESP32 ifdefs on irreceive examples.
- fixed indenting on existing code in a few places for consistency
- introduced IR_TIMER_USE_ESP32 for ifdefs within the code as per
  request
- added comments explaining what's missing for irsend support on ESP32
- IRrecvDemo.ino gets a warning before and after interrupt is enabled in
  case it causes a crash

TESTED=IoTuz ESP32 board and original 328p arduino to make sure current
code did not break.
2017-03-31 21:52:52 -07:00
Rafi Khan
513e104515 Merge pull request #427 from philipphenkel/lego_pf_integer_overflow_2
Fix calculation of pause length in LEGO PF protocol
2017-03-27 16:25:19 -06:00
Philipp Henkel
ccc9d0135c Add Lego fix to change and bump version up to 2.2.3 2017-03-27 19:57:25 +02:00
Philipp Henkel
257a15130f Fix calculation of pause length in LEGO PF protocol
Fix #384 Integer overflow in LEGO Power Functions affects pause between
messages
Is rebased version of PR #385
2017-03-26 22:32:55 +02:00
Marc MERLIN
1b56da6cc7 Rename ESP32 timer name so that it doesn't conflict with other timers. 2017-03-19 21:28:14 -07:00
Marc MERLIN
aa8f7b31fe Added ESP32 IR receive support (IRsend not implemented yet).
- disable a lot of defines not relevant to ESP32, set them to 1 (no-op)
- change default IR pin to 35 from 11
- changed serial speed to 115200 (9600 is too slow to keep up with IR input)
- irSend disables code that will not compile on ESP32. It won't work,
  but it won't break compilation either.
2017-03-19 20:27:56 -07:00
Rafi Khan
048efb23a2 Merge pull request #414 from z3t0/z3t0-patch-1
Update ISSUE_TEMPLATE.md
2017-02-06 22:26:51 -06:00
Rafi Khan
4f24b696cf Update ISSUE_TEMPLATE.md 2017-02-03 21:18:47 -06:00
Rafi Khan
a4cf8bc43e Merge pull request #406 from z3t0/panasonic-jvc
IRrecord.ino typo
2017-01-26 21:11:10 -06:00
Rafi Khan
3b41130ff9 Manual merge of #398 2017-01-22 01:52:14 -06:00
Rafi Khan
96efb5930a Merge pull request #402 from felipenoris/fn/fix-msg
fix example error message
2017-01-14 14:14:16 -06:00
Felipe Noronha
9a74475c8d fix example error message 2017-01-13 11:58:40 -02:00
Rafi Khan
7c14514beb Merge pull request #377 from z3t0/z3t0-patch-3
Just gonna put this in here....
2016-11-12 00:02:17 -06:00
Rafi Khan
20b6e3b8a2 Just gonna put this in here.... 2016-11-11 22:28:41 -06:00
Rafi Khan
fe27a84d26 Merge pull request #352 from bengtmartensson/boarddefs
Move board specific configuration info to new file boarddefs.h
2016-11-08 18:24:09 -06:00
Bengt Martensson
ccbaca5acc Merge branch 'boarddefs' of github.com:bengtmartensson/Arduino-IRremote into boarddefs 2016-11-07 17:04:41 +01:00
Bengt Martensson
74594847b7 Move board specific configuration info to new file boarddefs.h. 2016-11-07 17:02:34 +01:00
Rafi Khan
85f8aa1e25 Merge pull request #367 from z3t0/z3t0-patch-2
updated readme email notice
2016-10-26 22:05:22 -06:00
Rafi Khan
9ae0239fb7 updated readme email notice
far too many emails for things that should be an issue or  PR
2016-10-08 02:03:14 -06:00
Bengt Martensson
0d69a1a9ed Move board specific configuration info to new file boarddefs.h. 2016-08-23 15:23:51 +02:00
38 changed files with 3188 additions and 571 deletions

3
.gitignore vendored
View File

@@ -1,4 +1,3 @@
*.un~
*.sublime-project
*.sublime-workspace
*.DS_Store
*.sublime-workspace

30
.travis.yml Normal file
View File

@@ -0,0 +1,30 @@
language: python
python:
- "2.7"
# Cache PlatformIO packages using Travis CI container-based infrastructure
sudo: false
cache:
directories:
- "~/.platformio"
env:
- PLATFORMIO_CI_SRC=examples/AiwaRCT501SendDemo PLATFORMIO_BUILD_FLAGS="-DSEND_AIWA_RC_T501"
- PLATFORMIO_CI_SRC=examples/IRrecord PLATFORMIO_BUILD_FLAGS="-DSEND_NEC -DSEND_SONY -DSEND_RC5 -DSEND_RC6"
- PLATFORMIO_CI_SRC=examples/IRrecvDemo
- PLATFORMIO_CI_SRC=examples/IRrecvDump
- PLATFORMIO_CI_SRC=examples/IRrecvDumpV2
- PLATFORMIO_CI_SRC=examples/IRrelay
- PLATFORMIO_CI_SRC=examples/IRsendDemo PLATFORMIO_BUILD_FLAGS="-DSEND_SONY"
- PLATFORMIO_CI_SRC=examples/IRtest PLATFORMIO_BUILD_FLAGS="-DSEND_NEC -DSEND_SONY -DSEND_RC5 -DSEND_RC6"
- PLATFORMIO_CI_SRC=examples/IRtest2 PLATFORMIO_BUILD_FLAGS="-DSEND_NEC -DSEND_SONY -DSEND_RC5 -DSEND_RC6"
- PLATFORMIO_CI_SRC=examples/JVCPanasonicSendDemo PLATFORMIO_BUILD_FLAGS="-DSEND_JVC -DSEND_PANASONIC"
- PLATFORMIO_CI_SRC=examples/LegoPowerFunctionsSendDemo PLATFORMIO_BUILD_FLAGS="-DSEND_LEGO_PF"
- PLATFORMIO_CI_SRC=examples/LegoPowerFunctionsTests PLATFORMIO_BUILD_FLAGS="-DSEND_LEGO_PF"
- PLATFORMIO_CI_SRC=examples/IRremoteInfo
install:
- pip install -U platformio
script:
- platformio ci --lib="." --board=uno --board=leonardo --board=pro16MHzatmega168 --board=btatmega328

View File

@@ -3,8 +3,8 @@ These are the active contributors of this project that you may contact if there
- [z3t0](https://github.com/z3t0) : Active Contributor and currently also the main contributor.
* Email: zetoslab@gmail.com
* Skype: polarised16
- [shirriff](https://github.com/shirriff) : An amazing person who worked to create this awesome library and provide unending support
- [AnalysIR](https:/github.com/AnalysIR): Active contributor and is amazing with providing support!
- [Informatic](https://github.com/Informatic) : Active contributor
- [fmeschia](https://github.com/fmeschia) : Active contributor
- [PaulStoffregen](https://github.com/paulstroffregen) : Active contributor
@@ -15,7 +15,8 @@ These are the active contributors of this project that you may contact if there
- [Sebazzz](https://github.com/sebazz): Contributor
- [lumbric](https://github.com/lumbric): Contributor
- [ElectricRCAircraftGuy](https://github.com/electricrcaircraftguy): Active Contributor
- [henkel](https://github.com/henkel): Contributor
- [philipphenkel](https://github.com/philipphenkel): Active Contributor
- [MCUdude](https://github.com/MCUdude): Contributor
- [marcmerlin](https://github.com/marcmerlin): Contributor (ESP32 port)
Note: This list is being updated constantly so please let [z3t0](https://github.com/z3t0) know if you have been missed.

View File

@@ -18,14 +18,17 @@
// Whynter A/C ARC-110WD added by Francesco Meschia
//******************************************************************************
#include <avr/interrupt.h>
// Defining IR_GLOBAL here allows us to declare the instantiation of global variables
#define IR_GLOBAL
# include "IRremote.h"
# include "IRremoteInt.h"
#undef IR_GLOBAL
#ifndef IR_TIMER_USE_ESP32
#include <avr/interrupt.h>
#endif
//+=============================================================================
// The match functions were (apparently) originally MACROs to improve code speed
// (although this would have bloated the code) hence the names being CAPS
@@ -120,7 +123,11 @@ int MATCH_SPACE (int measured_ticks, int desired_us)
// As soon as first MARK arrives:
// Gap width is recorded; Ready is cleared; New logging starts
//
#ifdef IR_TIMER_USE_ESP32
void IRTimer()
#else
ISR (TIMER_INTR_NAME)
#endif
{
TIMER_RESET;

View File

@@ -270,6 +270,7 @@ class IRsend
//......................................................................
# if SEND_RC5
void sendRC5 (unsigned long data, int nbits) ;
void sendRC5ext (unsigned long addr, unsigned long cmd, boolean toggle);
# endif
# if SEND_RC6
void sendRC6 (unsigned long data, int nbits) ;

View File

@@ -68,40 +68,6 @@ irparams_t;
// Therefore we declare it as "volatile" to stop the compiler/CPU caching it
EXTERN volatile irparams_t irparams;
//------------------------------------------------------------------------------
// Defines for blinking the LED
//
#if defined(CORE_LED0_PIN)
# define BLINKLED CORE_LED0_PIN
# define BLINKLED_ON() (digitalWrite(CORE_LED0_PIN, HIGH))
# define BLINKLED_OFF() (digitalWrite(CORE_LED0_PIN, LOW))
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define BLINKLED 13
# define BLINKLED_ON() (PORTB |= B10000000)
# define BLINKLED_OFF() (PORTB &= B01111111)
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
# define BLINKLED 0
# define BLINKLED_ON() (PORTD |= B00000001)
# define BLINKLED_OFF() (PORTD &= B11111110)
#else
# define BLINKLED 13
#define BLINKLED_ON() (PORTB |= B00100000)
# define BLINKLED_OFF() (PORTB &= B11011111)
#endif
//------------------------------------------------------------------------------
// CPU Frequency
//
#ifdef F_CPU
# define SYSCLOCK F_CPU // main Arduino clock
#else
# define SYSCLOCK 16000000 // main Arduino clock
#endif
//------------------------------------------------------------------------------
// Defines for setting and clearing register bits
//
@@ -123,9 +89,6 @@ EXTERN volatile irparams_t irparams;
// Spaces tend to be 100us too short
#define MARK_EXCESS 100
// microseconds per clock interrupt tick
#define USECPERTICK 50
// Upper and Lower percentage tolerances in measurements
#define TOLERANCE 25
#define LTOL (1.0 - (TOLERANCE/100.))
@@ -144,491 +107,7 @@ EXTERN volatile irparams_t irparams;
#define MARK 0
#define SPACE 1
//------------------------------------------------------------------------------
// Define which timer to use
//
// Uncomment the timer you wish to use on your board.
// If you are using another library which uses timer2, you have options to
// switch IRremote to use a different timer.
//
// Arduino Mega
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
//#define IR_USE_TIMER1 // tx = pin 11
#define IR_USE_TIMER2 // tx = pin 9
//#define IR_USE_TIMER3 // tx = pin 5
//#define IR_USE_TIMER4 // tx = pin 6
//#define IR_USE_TIMER5 // tx = pin 46
// Teensy 1.0
#elif defined(__AVR_AT90USB162__)
#define IR_USE_TIMER1 // tx = pin 17
// Teensy 2.0
#elif defined(__AVR_ATmega32U4__)
//#define IR_USE_TIMER1 // tx = pin 14
//#define IR_USE_TIMER3 // tx = pin 9
#define IR_USE_TIMER4_HS // tx = pin 10
// Teensy 3.0 / Teensy 3.1
#elif defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
#define IR_USE_TIMER_CMT // tx = pin 5
// Teensy-LC
#elif defined(__MKL26Z64__)
#define IR_USE_TIMER_TPM1 // tx = pin 16
// Teensy++ 1.0 & 2.0
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
//#define IR_USE_TIMER1 // tx = pin 25
#define IR_USE_TIMER2 // tx = pin 1
//#define IR_USE_TIMER3 // tx = pin 16
// MightyCore - ATmega1284
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__)
//#define IR_USE_TIMER1 // tx = pin 13
#define IR_USE_TIMER2 // tx = pin 14
//#define IR_USE_TIMER3 // tx = pin 6
// MightyCore - ATmega164, ATmega324, ATmega644
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) \
|| defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324A__) \
|| defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega164A__) \
|| defined(__AVR_ATmega164P__)
//#define IR_USE_TIMER1 // tx = pin 13
#define IR_USE_TIMER2 // tx = pin 14
//MegaCore - ATmega64, ATmega128
#elif defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__)
#define IR_USE_TIMER1 // tx = pin 13
// MightyCore - ATmega8535, ATmega16, ATmega32
#elif defined(__AVR_ATmega8535__) || defined(__AVR_ATmega16__) || defined(__AVR_ATmega32__)
#define IR_USE_TIMER1 // tx = pin 13
// Atmega8
#elif defined(__AVR_ATmega8__)
#define IR_USE_TIMER1 // tx = pin 9
// ATtiny84
#elif defined(__AVR_ATtiny84__)
#define IR_USE_TIMER1 // tx = pin 6
//ATtiny85
#elif defined(__AVR_ATtiny85__)
#define IR_USE_TIMER_TINY0 // tx = pin 1
// Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, Nano, etc
// ATmega48, ATmega88, ATmega168, ATmega328
#else
//#define IR_USE_TIMER1 // tx = pin 9
#define IR_USE_TIMER2 // tx = pin 3
// All board specific stuff has been moved to its own file, included here.
#include "boarddefs.h"
#endif
//------------------------------------------------------------------------------
// Defines for Timer
//---------------------------------------------------------
// Timer2 (8 bits)
//
#if defined(IR_USE_TIMER2)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR2A |= _BV(COM2B1))
#define TIMER_DISABLE_PWM (TCCR2A &= ~(_BV(COM2B1)))
#define TIMER_ENABLE_INTR (TIMSK2 = _BV(OCIE2A))
#define TIMER_DISABLE_INTR (TIMSK2 = 0)
#define TIMER_INTR_NAME TIMER2_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint8_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR2A = _BV(WGM20); \
TCCR2B = _BV(WGM22) | _BV(CS20); \
OCR2A = pwmval; \
OCR2B = pwmval / 3; \
})
#define TIMER_COUNT_TOP (SYSCLOCK * USECPERTICK / 1000000)
//-----------------
#if (TIMER_COUNT_TOP < 256)
# define TIMER_CONFIG_NORMAL() ({ \
TCCR2A = _BV(WGM21); \
TCCR2B = _BV(CS20); \
OCR2A = TIMER_COUNT_TOP; \
TCNT2 = 0; \
})
#else
# define TIMER_CONFIG_NORMAL() ({ \
TCCR2A = _BV(WGM21); \
TCCR2B = _BV(CS21); \
OCR2A = TIMER_COUNT_TOP / 8; \
TCNT2 = 0; \
})
#endif
//-----------------
#if defined(CORE_OC2B_PIN)
# define TIMER_PWM_PIN CORE_OC2B_PIN // Teensy
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 9 // Arduino Mega
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) \
|| defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) \
|| defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324A__) \
|| defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega164A__) \
|| defined(__AVR_ATmega164P__)
# define TIMER_PWM_PIN 14 // MightyCore
#else
# define TIMER_PWM_PIN 3 // Arduino Duemilanove, Diecimila, LilyPad, etc
#endif // ATmega48, ATmega88, ATmega168, ATmega328
//---------------------------------------------------------
// Timer1 (16 bits)
//
#elif defined(IR_USE_TIMER1)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR1A |= _BV(COM1A1))
#define TIMER_DISABLE_PWM (TCCR1A &= ~(_BV(COM1A1)))
//-----------------
#if defined(__AVR_ATmega8__) || defined(__AVR_ATmega8535__) \
|| defined(__AVR_ATmega16__) || defined(__AVR_ATmega32__) \
|| defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__)
# define TIMER_ENABLE_INTR (TIMSK |= _BV(OCIE1A))
# define TIMER_DISABLE_INTR (TIMSK &= ~_BV(OCIE1A))
#else
# define TIMER_ENABLE_INTR (TIMSK1 = _BV(OCIE1A))
# define TIMER_DISABLE_INTR (TIMSK1 = 0)
#endif
//-----------------
#define TIMER_INTR_NAME TIMER1_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR1A = _BV(WGM11); \
TCCR1B = _BV(WGM13) | _BV(CS10); \
ICR1 = pwmval; \
OCR1A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR1A = 0; \
TCCR1B = _BV(WGM12) | _BV(CS10); \
OCR1A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT1 = 0; \
})
//-----------------
#if defined(CORE_OC1A_PIN)
# define TIMER_PWM_PIN CORE_OC1A_PIN // Teensy
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 11 // Arduino Mega
#elif defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__)
# define TIMER_PWM_PIN 13 // MegaCore
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) \
|| defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) \
|| defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324A__) \
|| defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega164A__) \
|| defined(__AVR_ATmega164P__) || defined(__AVR_ATmega32__) \
|| defined(__AVR_ATmega16__) || defined(__AVR_ATmega8535__)
# define TIMER_PWM_PIN 13 // MightyCore
#elif defined(__AVR_ATtiny84__)
# define TIMER_PWM_PIN 6
#else
# define TIMER_PWM_PIN 9 // Arduino Duemilanove, Diecimila, LilyPad, etc
#endif // ATmega48, ATmega88, ATmega168, ATmega328
//---------------------------------------------------------
// Timer3 (16 bits)
//
#elif defined(IR_USE_TIMER3)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR3A |= _BV(COM3A1))
#define TIMER_DISABLE_PWM (TCCR3A &= ~(_BV(COM3A1)))
#define TIMER_ENABLE_INTR (TIMSK3 = _BV(OCIE3A))
#define TIMER_DISABLE_INTR (TIMSK3 = 0)
#define TIMER_INTR_NAME TIMER3_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR3A = _BV(WGM31); \
TCCR3B = _BV(WGM33) | _BV(CS30); \
ICR3 = pwmval; \
OCR3A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR3A = 0; \
TCCR3B = _BV(WGM32) | _BV(CS30); \
OCR3A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT3 = 0; \
})
//-----------------
#if defined(CORE_OC3A_PIN)
# define TIMER_PWM_PIN CORE_OC3A_PIN // Teensy
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 5 // Arduino Mega
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__)
# define TIMER_PWM_PIN 6 // MightyCore
#else
# error "Please add OC3A pin number here\n"
#endif
//---------------------------------------------------------
// Timer4 (10 bits, high speed option)
//
#elif defined(IR_USE_TIMER4_HS)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(TOIE4))
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
#define TIMER_INTR_NAME TIMER4_OVF_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR4A = (1<<PWM4A); \
TCCR4B = _BV(CS40); \
TCCR4C = 0; \
TCCR4D = (1<<WGM40); \
TCCR4E = 0; \
TC4H = pwmval >> 8; \
OCR4C = pwmval; \
TC4H = (pwmval / 3) >> 8; \
OCR4A = (pwmval / 3) & 255; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR4A = 0; \
TCCR4B = _BV(CS40); \
TCCR4C = 0; \
TCCR4D = 0; \
TCCR4E = 0; \
TC4H = (SYSCLOCK * USECPERTICK / 1000000) >> 8; \
OCR4C = (SYSCLOCK * USECPERTICK / 1000000) & 255; \
TC4H = 0; \
TCNT4 = 0; \
})
//-----------------
#if defined(CORE_OC4A_PIN)
# define TIMER_PWM_PIN CORE_OC4A_PIN // Teensy
#elif defined(__AVR_ATmega32U4__)
# define TIMER_PWM_PIN 13 // Leonardo
#else
# error "Please add OC4A pin number here\n"
#endif
//---------------------------------------------------------
// Timer4 (16 bits)
//
#elif defined(IR_USE_TIMER4)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(OCIE4A))
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
#define TIMER_INTR_NAME TIMER4_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR4A = _BV(WGM41); \
TCCR4B = _BV(WGM43) | _BV(CS40); \
ICR4 = pwmval; \
OCR4A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR4A = 0; \
TCCR4B = _BV(WGM42) | _BV(CS40); \
OCR4A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT4 = 0; \
})
//-----------------
#if defined(CORE_OC4A_PIN)
# define TIMER_PWM_PIN CORE_OC4A_PIN
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 6 // Arduino Mega
#else
# error "Please add OC4A pin number here\n"
#endif
//---------------------------------------------------------
// Timer5 (16 bits)
//
#elif defined(IR_USE_TIMER5)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR5A |= _BV(COM5A1))
#define TIMER_DISABLE_PWM (TCCR5A &= ~(_BV(COM5A1)))
#define TIMER_ENABLE_INTR (TIMSK5 = _BV(OCIE5A))
#define TIMER_DISABLE_INTR (TIMSK5 = 0)
#define TIMER_INTR_NAME TIMER5_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR5A = _BV(WGM51); \
TCCR5B = _BV(WGM53) | _BV(CS50); \
ICR5 = pwmval; \
OCR5A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR5A = 0; \
TCCR5B = _BV(WGM52) | _BV(CS50); \
OCR5A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT5 = 0; \
})
//-----------------
#if defined(CORE_OC5A_PIN)
# define TIMER_PWM_PIN CORE_OC5A_PIN
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 46 // Arduino Mega
#else
# error "Please add OC5A pin number here\n"
#endif
//---------------------------------------------------------
// Special carrier modulator timer
//
#elif defined(IR_USE_TIMER_CMT)
#define TIMER_RESET ({ \
uint8_t tmp __attribute__((unused)) = CMT_MSC; \
CMT_CMD2 = 30; \
})
#define TIMER_ENABLE_PWM do { \
CORE_PIN5_CONFIG = PORT_PCR_MUX(2) | PORT_PCR_DSE | PORT_PCR_SRE; \
} while(0)
#define TIMER_DISABLE_PWM do { \
CORE_PIN5_CONFIG = PORT_PCR_MUX(1) | PORT_PCR_DSE | PORT_PCR_SRE; \
} while(0)
#define TIMER_ENABLE_INTR NVIC_ENABLE_IRQ(IRQ_CMT)
#define TIMER_DISABLE_INTR NVIC_DISABLE_IRQ(IRQ_CMT)
#define TIMER_INTR_NAME cmt_isr
//-----------------
#ifdef ISR
# undef ISR
#endif
#define ISR(f) void f(void)
//-----------------
#define CMT_PPS_DIV ((F_BUS + 7999999) / 8000000)
#if F_BUS < 8000000
#error IRremote requires at least 8 MHz on Teensy 3.x
#endif
//-----------------
#define TIMER_CONFIG_KHZ(val) ({ \
SIM_SCGC4 |= SIM_SCGC4_CMT; \
SIM_SOPT2 |= SIM_SOPT2_PTD7PAD; \
CMT_PPS = CMT_PPS_DIV - 1; \
CMT_CGH1 = ((F_BUS / CMT_PPS_DIV / 3000) + ((val)/2)) / (val); \
CMT_CGL1 = ((F_BUS / CMT_PPS_DIV / 1500) + ((val)/2)) / (val); \
CMT_CMD1 = 0; \
CMT_CMD2 = 30; \
CMT_CMD3 = 0; \
CMT_CMD4 = 0; \
CMT_OC = 0x60; \
CMT_MSC = 0x01; \
})
#define TIMER_CONFIG_NORMAL() ({ \
SIM_SCGC4 |= SIM_SCGC4_CMT; \
CMT_PPS = CMT_PPS_DIV - 1; \
CMT_CGH1 = 1; \
CMT_CGL1 = 1; \
CMT_CMD1 = 0; \
CMT_CMD2 = 30; \
CMT_CMD3 = 0; \
CMT_CMD4 = (F_BUS / 160000 + CMT_PPS_DIV / 2) / CMT_PPS_DIV - 31; \
CMT_OC = 0; \
CMT_MSC = 0x03; \
})
#define TIMER_PWM_PIN 5
// defines for TPM1 timer on Teensy-LC
#elif defined(IR_USE_TIMER_TPM1)
#define TIMER_RESET FTM1_SC |= FTM_SC_TOF;
#define TIMER_ENABLE_PWM CORE_PIN16_CONFIG = PORT_PCR_MUX(3)|PORT_PCR_DSE|PORT_PCR_SRE
#define TIMER_DISABLE_PWM CORE_PIN16_CONFIG = PORT_PCR_MUX(1)|PORT_PCR_SRE
#define TIMER_ENABLE_INTR NVIC_ENABLE_IRQ(IRQ_FTM1)
#define TIMER_DISABLE_INTR NVIC_DISABLE_IRQ(IRQ_FTM1)
#define TIMER_INTR_NAME ftm1_isr
#ifdef ISR
#undef ISR
#endif
#define ISR(f) void f(void)
#define TIMER_CONFIG_KHZ(val) ({ \
SIM_SCGC6 |= SIM_SCGC6_TPM1; \
FTM1_SC = 0; \
FTM1_CNT = 0; \
FTM1_MOD = (F_PLL/2000) / val - 1; \
FTM1_C0V = (F_PLL/6000) / val - 1; \
FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0); \
})
#define TIMER_CONFIG_NORMAL() ({ \
SIM_SCGC6 |= SIM_SCGC6_TPM1; \
FTM1_SC = 0; \
FTM1_CNT = 0; \
FTM1_MOD = (F_PLL/40000) - 1; \
FTM1_C0V = 0; \
FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0) | FTM_SC_TOF | FTM_SC_TOIE; \
})
#define TIMER_PWM_PIN 16
// defines for timer_tiny0 (8 bits)
#elif defined(IR_USE_TIMER_TINY0)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR0A |= _BV(COM0B1))
#define TIMER_DISABLE_PWM (TCCR0A &= ~(_BV(COM0B1)))
#define TIMER_ENABLE_INTR (TIMSK |= _BV(OCIE0A))
#define TIMER_DISABLE_INTR (TIMSK &= ~(_BV(OCIE0A)))
#define TIMER_INTR_NAME TIMER0_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint8_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR0A = _BV(WGM00); \
TCCR0B = _BV(WGM02) | _BV(CS00); \
OCR0A = pwmval; \
OCR0B = pwmval / 3; \
})
#define TIMER_COUNT_TOP (SYSCLOCK * USECPERTICK / 1000000)
#if (TIMER_COUNT_TOP < 256)
#define TIMER_CONFIG_NORMAL() ({ \
TCCR0A = _BV(WGM01); \
TCCR0B = _BV(CS00); \
OCR0A = TIMER_COUNT_TOP; \
TCNT0 = 0; \
})
#else
#define TIMER_CONFIG_NORMAL() ({ \
TCCR0A = _BV(WGM01); \
TCCR0B = _BV(CS01); \
OCR0A = TIMER_COUNT_TOP / 8; \
TCNT0 = 0; \
})
#endif
#define TIMER_PWM_PIN 1 /* ATtiny85 */
//---------------------------------------------------------
// Unknown Timer
//
#else
# error "Internal code configuration error, no known IR_USE_TIMER# defined\n"
#endif
#endif

View File

@@ -14,8 +14,12 @@
Use [a gist](gist.github.com) if the code exceeds 30 lines
**checklist:**
- [] I have **read** the README.md file thoroughly
- [] I have searched existing issues to see if there is anything I have missed.
- [] The latest [release](https://github.com/z3t0/Arduino-IRremote/releases/latest) is used
- [] Any code referenced is provided
- [] Any code referenced is provided and if over 30 lines a gist is linked INSTEAD of it being pasted in here
- [] The title of the issue is helpful and relevant
The above is a short template allowing you to make detailed issues!
** We will start to close issues that do not follow these guidelines as it doesn't help the contributors who spend time trying to solve issues if the community ignores guidelines!**
The above is a short template allowing you to make detailed issues!

View File

@@ -1,20 +1,5 @@
# IRremote Arduino Library
# todo
- [ ] only keep base functions in the library
- [ ] move all protocols to examples as sketches
- [ ] notation for ir protocols
- [ ] update keywords.txt
- [ ] write some documentation on library development
- [ ] write documentation for library usage
- [ ] remove documentation from source code? cleaner code
- [ ] write tutorials
- [ ] update links (library.properties)
- [ ] update travis coverage
- [ ] create a rules list for issues and prs
- [ ] create guidlines for contributions, line-endings, indentations etc.
[![Build Status](https://travis-ci.org/z3t0/Arduino-IRremote.svg?branch=master)](https://travis-ci.org/z3t0/Arduino-IRremote)
[![Join the chat at https://gitter.im/z3t0/Arduino-IRremote](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/z3t0/Arduino-IRremote?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
@@ -23,7 +8,7 @@ This library enables you to send and receive using infra-red signals on an Ardui
Tutorials and more information will be made available on [the official homepage](http://z3t0.github.io/Arduino-IRremote/).
## Version - 3.0.0b
## Version - 2.4.3
## Installation
1. Navigate to the [Releases](https://github.com/z3t0/Arduino-IRremote/releases) page.
@@ -32,6 +17,12 @@ Tutorials and more information will be made available on [the official homepage]
4. Move the "IRremote" folder that has been extracted to your libraries directory.
5. Make sure to delete Arduino_Root/libraries/RobotIRremote. Where Arduino_Root refers to the install directory of Arduino. The library RobotIRremote has similar definitions to IRremote and causes errors.
## FAQ
- IR does not work right when I use Neopixels (aka WS2811/WS2812/WS2812B)
Whether you use the Adafruit Neopixel lib, or FastLED, interrupts get disabled on many lower end CPUs like the basic arduinos. In turn, this stops the IR interrupt handler from running when it needs to. There are some solutions to this on some processors, [see this page from Marc MERLIN](http://marc.merlins.org/perso/arduino/post_2017-04-03_Arduino-328P-Uno-Teensy3_1-ESP8266-ESP32-IR-and-Neopixels.html)
## Supported Boards
- Arduino Uno / Mega / Leonardo / Duemilanove / Diecimila / LilyPad / Mini / Fio / Nano etc.
- Teensy 1.0 / 1.0++ / 2.0 / 2++ / 3.0 / 3.1 / Teensy-LC; Credits: @PaulStoffregen (Teensy Team)
@@ -40,6 +31,8 @@ Tutorials and more information will be made available on [the official homepage]
- ATmega8535, 16, 32, 164, 324, 644, 1284,
- ATmega64, 128
- ATtiny 84 / 85
- ESP32 (receive only)
- ESP8266 is supported in a fork based on an old codebase that isn't as recent, but it works reasonably well given that perfectly timed sub millisecond interrupts are different on that chip. See https://github.com/markszabo/IRremoteESP8266
We are open to suggestions for adding support to new boards, however we highly recommend you contact your supplier first and ask them to provide support from their side.
@@ -50,19 +43,26 @@ We are open to suggestions for adding support to new boards, however we highly r
| [ATtiny84](https://github.com/SpenceKonde/ATTinyCore) | **6** | **1** |
| [ATtiny85](https://github.com/SpenceKonde/ATTinyCore) | **1** | **TINY0** |
| [ATmega8](https://github.com/MCUdude/MiniCore) | **9** | **1** |
| Atmega32u4 | 5, 9, **13** | 1, 3, **4** |
| Atmega32u4 | 5, **9**, 13 | 1, 3, **4** |
| [ATmega48, ATmega88, ATmega168, ATmega328](https://github.com/MCUdude/MiniCore) | **3**, 9 | 1, **2** |
| [ATmega1284](https://github.com/MCUdude/MightyCore) | 13, 14, 6 | 1, **2**, 3 |
| [ATmega164, ATmega324, ATmega644](https://github.com/MCUdude/MightyCore) | 13, **14** | 1, **2** |
| [ATmega8535 ATmega16, ATmega32](https://github.com/MCUdude/MightyCore) | **13** | **1** |
| [ATmega64, ATmega128](https://github.com/MCUdude/MegaCore) | **13** | **1** |
| ATmega1280, ATmega2560 | 5, 6, **9**, 11, 46 | 1, **2**, 3, 4, 5 |
| [ESP32](http://esp32.net/) | N/A (not supported) | **1** |
| [Teensy 1.0](https://www.pjrc.com/teensy/) | **17** | **1** |
| [Teensy 2.0](https://www.pjrc.com/teensy/) | 9, **10**, 14 | 1, 3, **4_HS** |
| [Teensy++ 1.0 / 2.0](https://www.pjrc.com/teensy/) | **1**, 16, 25 | 1, **2**, 3 |
| [Teensy 3.0 / 3.1](https://www.pjrc.com/teensy/) | **5** | **CMT** |
| [Teensy-LC](https://www.pjrc.com/teensy/) | **16** | **TPM1** |
### Experimental patches
The following are strictly community supported patches that have yet to make it into mainstream. If you have issues feel free to ask here. If it works well then let us know!
[Arduino 101](https://github.com/z3t0/Arduino-IRremote/pull/481#issuecomment-311243146)
The table above lists the currently supported timers and corresponding send pins, many of these can have additional pins opened up and we are open to requests if a need arises for other pins.
## Usage
@@ -79,12 +79,11 @@ If you want to contribute to this project:
Check [here](Contributing.md) for some guidelines.
## Contact
The only way to contact me at the moment is by email: zetoslab@gmail.com
I am not currently monitoring any PRs or Issues due to other issues but will respond to all emails. If anyone wants contributor access, feel free to email me. Or if you find any Issues/PRs to be of importance that my attention is needed please email me.
Email: zetoslab@gmail.com
Please only email me if it is more appropriate than creating an Issue / PR. I **will** not respond to requests for adding support for particular boards, unless of course you are the creator of the board and would like to cooperate on the project. I will also **ignore** any emails asking me to tell you how to implement your ideas. However, if you have a private inquiry that you would only apply to you and you would prefer it to be via email, by all means.
## Contributors
Check [here](Contributors.md)
## Copyright
Copyright 2009-2012 Ken Shirriff
Copyright (c) 2016 Rafi Khan

View File

@@ -0,0 +1,240 @@
{
"auto_complete":
{
"selected_items":
[
[
"vb",
"vboMatrix"
]
]
},
"buffers":
[
],
"build_system": "",
"build_system_choices":
[
],
"build_varint": "",
"command_palette":
{
"height": 275.0,
"last_filter": "blame",
"selected_items":
[
[
"blame",
"Git: Blame"
],
[
"install",
"Package Control: Install Package"
],
[
"diff",
"Git: Diff Current File"
],
[
"js",
"Set Syntax: JavaScript"
],
[
"i",
"Package Control: Install Package"
],
[
"instal",
"Package Control: Install Package"
]
],
"width": 510.0
},
"console":
{
"height": 126.0,
"history":
[
"import urllib.request,os,hashlib; h = '2915d1851351e5ee549c20394736b442' + '8bc59f460fa1548d1514676163dafc88'; pf = 'Package Control.sublime-package'; ipp = sublime.installed_packages_path(); urllib.request.install_opener( urllib.request.build_opener( urllib.request.ProxyHandler()) ); by = urllib.request.urlopen( 'http://packagecontrol.io/' + pf.replace(' ', '%20')).read(); dh = hashlib.sha256(by).hexdigest(); print('Error validating download (got %s instead of %s), please try manual install' % (dh, h)) if dh != h else open(os.path.join( ipp, pf), 'wb' ).write(by)"
]
},
"distraction_free":
{
"menu_visible": true,
"show_minimap": false,
"show_open_files": false,
"show_tabs": false,
"side_bar_visible": false,
"status_bar_visible": false
},
"expanded_folders":
[
"/C/Users/Rafi Khan/Documents/Arduino/libraries/Arduino-IRremote"
],
"file_history":
[
"/C/Users/Rafi Khan/Documents/Arduino/libraries/Arduino-IRremote/changelog.md",
"/C/Users/Rafi Khan/Documents/Development/Arduino-IRremote/arduino-irremote.sublime-project",
"/C/Users/Rafi Khan/Documents/Development/Arduino-IRremote/.gitignore",
"/C/Users/Rafi Khan/Documents/Development/magic/README.md",
"/C/Users/Rafi Khan/Documents/Development/magic/shader.frag",
"/C/Users/Rafi Khan/Documents/Development/magic/package.json",
"/C/Users/Rafi Khan/Documents/Development/magic/block.js",
"/C/Users/Rafi Khan/Documents/Development/magic/chunker.js",
"/C/Users/Rafi Khan/Documents/Development/magic/index.js",
"/C/Users/Rafi Khan/Documents/Development/magic/blocks",
"/C/Users/Rafi Khan/AppData/Roaming/Sublime Text 3/Packages/User/Preferences.sublime-settings",
"/C/Users/Rafi Khan/Documents/Development/magic/shader.vert",
"/C/Users/Rafi Khan/Documents/Development/magic/magic.sublime-project",
"/C/Users/Rafi Khan/Documents/Development/magic/node_modules/browserify/node_modules/syntax-error/node_modules/acorn/.tern-project",
"/C/Users/Rafi Khan/OneDrive/Documents/School-RafiKhan/Grade 11/CS30/Python/supermarket.py",
"/C/Users/Rafi Khan/OneDrive/Documents/School-RafiKhan/Grade 11/CS30/Python/takingavacation.py",
"/C/Users/Rafi Khan/OneDrive/Documents/School-RafiKhan/Grade 11/CS30/Python/TipCalculator.py",
"/C/Users/Rafi Khan/OneDrive/Documents/School-RafiKhan/Grade 11/CS30/Python/battleship.py",
"/C/Users/Rafi Khan/OneDrive/Documents/School-RafiKhan/Grade 11/CS30/Python/exam.py",
"/C/Users/Rafi Khan/OneDrive/Documents/School-RafiKhan/Grade 11/CS30/Python/pyglatin.py",
"/C/Users/Rafi Khan/OneDrive/Documents/School-RafiKhan/Grade 11/CS30/Python/student.py"
],
"find":
{
"height": 28.0
},
"find_in_files":
{
"height": 0.0,
"where_history":
[
]
},
"find_state":
{
"case_sensitive": false,
"find_history":
[
"i",
"Direction",
";",
";\n",
"north",
"cubeMatrix",
")\n",
"vec3.set",
"f",
";",
"();\n",
"render",
"this",
"y"
],
"highlight": true,
"in_selection": false,
"preserve_case": false,
"regex": false,
"replace_history":
[
],
"reverse": false,
"show_context": true,
"use_buffer2": true,
"whole_word": false,
"wrap": true
},
"groups":
[
{
"sheets":
[
]
}
],
"incremental_find":
{
"height": 28.0
},
"input":
{
"height": 66.0
},
"layout":
{
"cells":
[
[
0,
0,
1,
1
]
],
"cols":
[
0.0,
1.0
],
"rows":
[
0.0,
1.0
]
},
"menu_visible": true,
"output.find_results":
{
"height": 0.0
},
"pinned_build_system": "",
"project": "arduino-irremote.sublime-project",
"replace":
{
"height": 52.0
},
"save_all_on_build": true,
"select_file":
{
"height": 0.0,
"last_filter": "",
"selected_items":
[
[
"json",
"package.json"
],
[
"inde",
"index.js"
]
],
"width": 0.0
},
"select_project":
{
"height": 0.0,
"last_filter": "",
"selected_items":
[
],
"width": 0.0
},
"select_symbol":
{
"height": 0.0,
"last_filter": "",
"selected_items":
[
],
"width": 0.0
},
"selected_group": 0,
"settings":
{
},
"show_minimap": true,
"show_open_files": false,
"show_tabs": true,
"side_bar_visible": true,
"side_bar_width": 150.0,
"status_bar_visible": true,
"template_settings":
{
}
}

577
boarddefs.h Normal file
View File

@@ -0,0 +1,577 @@
//******************************************************************************
// IRremote
// Version 2.0.1 June, 2015
// Copyright 2009 Ken Shirriff
// For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
// This file contains all board specific information. It was previously contained within
// IRremoteInt.h
// Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
//
// Interrupt code based on NECIRrcv by Joe Knapp
// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
// Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
//
// JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
// Whynter A/C ARC-110WD added by Francesco Meschia
//******************************************************************************
#ifndef boarddefs_h
#define boarddefs_h
//------------------------------------------------------------------------------
// Defines for blinking the LED
//
#if defined(CORE_LED0_PIN)
# define BLINKLED CORE_LED0_PIN
# define BLINKLED_ON() (digitalWrite(CORE_LED0_PIN, HIGH))
# define BLINKLED_OFF() (digitalWrite(CORE_LED0_PIN, LOW))
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define BLINKLED 13
# define BLINKLED_ON() (PORTB |= B10000000)
# define BLINKLED_OFF() (PORTB &= B01111111)
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
# define BLINKLED 0
# define BLINKLED_ON() (PORTD |= B00000001)
# define BLINKLED_OFF() (PORTD &= B11111110)
// No system LED on ESP32, disable blinking
#elif defined(ESP32)
# define BLINKLED 255
# define BLINKLED_ON() 1
# define BLINKLED_OFF() 1
#else
# define BLINKLED 13
# define BLINKLED_ON() (PORTB |= B00100000)
# define BLINKLED_OFF() (PORTB &= B11011111)
#endif
//------------------------------------------------------------------------------
// CPU Frequency
//
#ifdef F_CPU
# define SYSCLOCK F_CPU // main Arduino clock
#else
# define SYSCLOCK 16000000 // main Arduino clock
#endif
// microseconds per clock interrupt tick
#define USECPERTICK 50
//------------------------------------------------------------------------------
// Define which timer to use
//
// Uncomment the timer you wish to use on your board.
// If you are using another library which uses timer2, you have options to
// switch IRremote to use a different timer.
//
// Arduino Mega
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
//#define IR_USE_TIMER1 // tx = pin 11
#define IR_USE_TIMER2 // tx = pin 9
//#define IR_USE_TIMER3 // tx = pin 5
//#define IR_USE_TIMER4 // tx = pin 6
//#define IR_USE_TIMER5 // tx = pin 46
// Teensy 1.0
#elif defined(__AVR_AT90USB162__)
#define IR_USE_TIMER1 // tx = pin 17
// Teensy 2.0
#elif defined(__AVR_ATmega32U4__)
//#define IR_USE_TIMER1 // tx = pin 14
#define IR_USE_TIMER3 // tx = pin 9
//#define IR_USE_TIMER4_HS // tx = pin 10
// Teensy 3.0 / Teensy 3.1
#elif defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
#define IR_USE_TIMER_CMT // tx = pin 5
// Teensy-LC
#elif defined(__MKL26Z64__)
#define IR_USE_TIMER_TPM1 // tx = pin 16
// Teensy++ 1.0 & 2.0
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
//#define IR_USE_TIMER1 // tx = pin 25
#define IR_USE_TIMER2 // tx = pin 1
//#define IR_USE_TIMER3 // tx = pin 16
// MightyCore - ATmega1284
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__)
//#define IR_USE_TIMER1 // tx = pin 13
#define IR_USE_TIMER2 // tx = pin 14
//#define IR_USE_TIMER3 // tx = pin 6
// MightyCore - ATmega164, ATmega324, ATmega644
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) \
|| defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324A__) \
|| defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega164A__) \
|| defined(__AVR_ATmega164P__)
//#define IR_USE_TIMER1 // tx = pin 13
#define IR_USE_TIMER2 // tx = pin 14
//MegaCore - ATmega64, ATmega128
#elif defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__)
#define IR_USE_TIMER1 // tx = pin 13
// MightyCore - ATmega8535, ATmega16, ATmega32
#elif defined(__AVR_ATmega8535__) || defined(__AVR_ATmega16__) || defined(__AVR_ATmega32__)
#define IR_USE_TIMER1 // tx = pin 13
// Atmega8
#elif defined(__AVR_ATmega8__)
#define IR_USE_TIMER1 // tx = pin 9
// ATtiny84
#elif defined(__AVR_ATtiny84__)
#define IR_USE_TIMER1 // tx = pin 6
//ATtiny85
#elif defined(__AVR_ATtiny85__)
#define IR_USE_TIMER_TINY0 // tx = pin 1
#elif defined(ESP32)
#define IR_TIMER_USE_ESP32
#else
// Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, Nano, etc
// ATmega48, ATmega88, ATmega168, ATmega328
//#define IR_USE_TIMER1 // tx = pin 9
#define IR_USE_TIMER2 // tx = pin 3
#endif
//------------------------------------------------------------------------------
// Defines for Timer
//---------------------------------------------------------
// Timer2 (8 bits)
//
#if defined(IR_USE_TIMER2)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR2A |= _BV(COM2B1))
#define TIMER_DISABLE_PWM (TCCR2A &= ~(_BV(COM2B1)))
#define TIMER_ENABLE_INTR (TIMSK2 = _BV(OCIE2A))
#define TIMER_DISABLE_INTR (TIMSK2 = 0)
#define TIMER_INTR_NAME TIMER2_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint8_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR2A = _BV(WGM20); \
TCCR2B = _BV(WGM22) | _BV(CS20); \
OCR2A = pwmval; \
OCR2B = pwmval / 3; \
})
#define TIMER_COUNT_TOP (SYSCLOCK * USECPERTICK / 1000000)
//-----------------
#if (TIMER_COUNT_TOP < 256)
# define TIMER_CONFIG_NORMAL() ({ \
TCCR2A = _BV(WGM21); \
TCCR2B = _BV(CS20); \
OCR2A = TIMER_COUNT_TOP; \
TCNT2 = 0; \
})
#else
# define TIMER_CONFIG_NORMAL() ({ \
TCCR2A = _BV(WGM21); \
TCCR2B = _BV(CS21); \
OCR2A = TIMER_COUNT_TOP / 8; \
TCNT2 = 0; \
})
#endif
//-----------------
#if defined(CORE_OC2B_PIN)
# define TIMER_PWM_PIN CORE_OC2B_PIN // Teensy
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 9 // Arduino Mega
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) \
|| defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) \
|| defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324A__) \
|| defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega164A__) \
|| defined(__AVR_ATmega164P__)
# define TIMER_PWM_PIN 14 // MightyCore
#else
# define TIMER_PWM_PIN 3 // Arduino Duemilanove, Diecimila, LilyPad, etc
#endif // ATmega48, ATmega88, ATmega168, ATmega328
//---------------------------------------------------------
// Timer1 (16 bits)
//
#elif defined(IR_USE_TIMER1)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR1A |= _BV(COM1A1))
#define TIMER_DISABLE_PWM (TCCR1A &= ~(_BV(COM1A1)))
//-----------------
#if defined(__AVR_ATmega8__) || defined(__AVR_ATmega8535__) \
|| defined(__AVR_ATmega16__) || defined(__AVR_ATmega32__) \
|| defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__)
# define TIMER_ENABLE_INTR (TIMSK |= _BV(OCIE1A))
# define TIMER_DISABLE_INTR (TIMSK &= ~_BV(OCIE1A))
#else
# define TIMER_ENABLE_INTR (TIMSK1 = _BV(OCIE1A))
# define TIMER_DISABLE_INTR (TIMSK1 = 0)
#endif
//-----------------
#define TIMER_INTR_NAME TIMER1_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR1A = _BV(WGM11); \
TCCR1B = _BV(WGM13) | _BV(CS10); \
ICR1 = pwmval; \
OCR1A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR1A = 0; \
TCCR1B = _BV(WGM12) | _BV(CS10); \
OCR1A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT1 = 0; \
})
//-----------------
#if defined(CORE_OC1A_PIN)
# define TIMER_PWM_PIN CORE_OC1A_PIN // Teensy
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 11 // Arduino Mega
#elif defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__)
# define TIMER_PWM_PIN 13 // MegaCore
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) \
|| defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) \
|| defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324A__) \
|| defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega164A__) \
|| defined(__AVR_ATmega164P__) || defined(__AVR_ATmega32__) \
|| defined(__AVR_ATmega16__) || defined(__AVR_ATmega8535__)
# define TIMER_PWM_PIN 13 // MightyCore
#elif defined(__AVR_ATtiny84__)
# define TIMER_PWM_PIN 6
#else
# define TIMER_PWM_PIN 9 // Arduino Duemilanove, Diecimila, LilyPad, etc
#endif // ATmega48, ATmega88, ATmega168, ATmega328
//---------------------------------------------------------
// Timer3 (16 bits)
//
#elif defined(IR_USE_TIMER3)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR3A |= _BV(COM3A1))
#define TIMER_DISABLE_PWM (TCCR3A &= ~(_BV(COM3A1)))
#define TIMER_ENABLE_INTR (TIMSK3 = _BV(OCIE3A))
#define TIMER_DISABLE_INTR (TIMSK3 = 0)
#define TIMER_INTR_NAME TIMER3_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR3A = _BV(WGM31); \
TCCR3B = _BV(WGM33) | _BV(CS30); \
ICR3 = pwmval; \
OCR3A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR3A = 0; \
TCCR3B = _BV(WGM32) | _BV(CS30); \
OCR3A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT3 = 0; \
})
//-----------------
#if defined(CORE_OC3A_PIN)
# define TIMER_PWM_PIN CORE_OC3A_PIN // Teensy
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 5 // Arduino Mega
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__)
# define TIMER_PWM_PIN 6 // MightyCore
#else
# error "Please add OC3A pin number here\n"
#endif
//---------------------------------------------------------
// Timer4 (10 bits, high speed option)
//
#elif defined(IR_USE_TIMER4_HS)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(TOIE4))
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
#define TIMER_INTR_NAME TIMER4_OVF_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR4A = (1<<PWM4A); \
TCCR4B = _BV(CS40); \
TCCR4C = 0; \
TCCR4D = (1<<WGM40); \
TCCR4E = 0; \
TC4H = pwmval >> 8; \
OCR4C = pwmval; \
TC4H = (pwmval / 3) >> 8; \
OCR4A = (pwmval / 3) & 255; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR4A = 0; \
TCCR4B = _BV(CS40); \
TCCR4C = 0; \
TCCR4D = 0; \
TCCR4E = 0; \
TC4H = (SYSCLOCK * USECPERTICK / 1000000) >> 8; \
OCR4C = (SYSCLOCK * USECPERTICK / 1000000) & 255; \
TC4H = 0; \
TCNT4 = 0; \
})
//-----------------
#if defined(CORE_OC4A_PIN)
# define TIMER_PWM_PIN CORE_OC4A_PIN // Teensy
#elif defined(__AVR_ATmega32U4__)
# define TIMER_PWM_PIN 13 // Leonardo
#else
# error "Please add OC4A pin number here\n"
#endif
//---------------------------------------------------------
// Timer4 (16 bits)
//
#elif defined(IR_USE_TIMER4)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(OCIE4A))
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
#define TIMER_INTR_NAME TIMER4_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR4A = _BV(WGM41); \
TCCR4B = _BV(WGM43) | _BV(CS40); \
ICR4 = pwmval; \
OCR4A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR4A = 0; \
TCCR4B = _BV(WGM42) | _BV(CS40); \
OCR4A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT4 = 0; \
})
//-----------------
#if defined(CORE_OC4A_PIN)
# define TIMER_PWM_PIN CORE_OC4A_PIN
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 6 // Arduino Mega
#else
# error "Please add OC4A pin number here\n"
#endif
//---------------------------------------------------------
// Timer5 (16 bits)
//
#elif defined(IR_USE_TIMER5)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR5A |= _BV(COM5A1))
#define TIMER_DISABLE_PWM (TCCR5A &= ~(_BV(COM5A1)))
#define TIMER_ENABLE_INTR (TIMSK5 = _BV(OCIE5A))
#define TIMER_DISABLE_INTR (TIMSK5 = 0)
#define TIMER_INTR_NAME TIMER5_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR5A = _BV(WGM51); \
TCCR5B = _BV(WGM53) | _BV(CS50); \
ICR5 = pwmval; \
OCR5A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR5A = 0; \
TCCR5B = _BV(WGM52) | _BV(CS50); \
OCR5A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT5 = 0; \
})
//-----------------
#if defined(CORE_OC5A_PIN)
# define TIMER_PWM_PIN CORE_OC5A_PIN
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 46 // Arduino Mega
#else
# error "Please add OC5A pin number here\n"
#endif
//---------------------------------------------------------
// Special carrier modulator timer
//
#elif defined(IR_USE_TIMER_CMT)
#define TIMER_RESET ({ \
uint8_t tmp __attribute__((unused)) = CMT_MSC; \
CMT_CMD2 = 30; \
})
#define TIMER_ENABLE_PWM do { \
CORE_PIN5_CONFIG = PORT_PCR_MUX(2) | PORT_PCR_DSE | PORT_PCR_SRE; \
} while(0)
#define TIMER_DISABLE_PWM do { \
CORE_PIN5_CONFIG = PORT_PCR_MUX(1) | PORT_PCR_DSE | PORT_PCR_SRE; \
} while(0)
#define TIMER_ENABLE_INTR NVIC_ENABLE_IRQ(IRQ_CMT)
#define TIMER_DISABLE_INTR NVIC_DISABLE_IRQ(IRQ_CMT)
#define TIMER_INTR_NAME cmt_isr
//-----------------
#ifdef ISR
# undef ISR
#endif
#define ISR(f) void f(void)
//-----------------
#define CMT_PPS_DIV ((F_BUS + 7999999) / 8000000)
#if F_BUS < 8000000
#error IRremote requires at least 8 MHz on Teensy 3.x
#endif
//-----------------
#define TIMER_CONFIG_KHZ(val) ({ \
SIM_SCGC4 |= SIM_SCGC4_CMT; \
SIM_SOPT2 |= SIM_SOPT2_PTD7PAD; \
CMT_PPS = CMT_PPS_DIV - 1; \
CMT_CGH1 = ((F_BUS / CMT_PPS_DIV / 3000) + ((val)/2)) / (val); \
CMT_CGL1 = ((F_BUS / CMT_PPS_DIV / 1500) + ((val)/2)) / (val); \
CMT_CMD1 = 0; \
CMT_CMD2 = 30; \
CMT_CMD3 = 0; \
CMT_CMD4 = 0; \
CMT_OC = 0x60; \
CMT_MSC = 0x01; \
})
#define TIMER_CONFIG_NORMAL() ({ \
SIM_SCGC4 |= SIM_SCGC4_CMT; \
CMT_PPS = CMT_PPS_DIV - 1; \
CMT_CGH1 = 1; \
CMT_CGL1 = 1; \
CMT_CMD1 = 0; \
CMT_CMD2 = 30; \
CMT_CMD3 = 0; \
CMT_CMD4 = (F_BUS / 160000 + CMT_PPS_DIV / 2) / CMT_PPS_DIV - 31; \
CMT_OC = 0; \
CMT_MSC = 0x03; \
})
#define TIMER_PWM_PIN 5
// defines for TPM1 timer on Teensy-LC
#elif defined(IR_USE_TIMER_TPM1)
#define TIMER_RESET FTM1_SC |= FTM_SC_TOF;
#define TIMER_ENABLE_PWM CORE_PIN16_CONFIG = PORT_PCR_MUX(3)|PORT_PCR_DSE|PORT_PCR_SRE
#define TIMER_DISABLE_PWM CORE_PIN16_CONFIG = PORT_PCR_MUX(1)|PORT_PCR_SRE
#define TIMER_ENABLE_INTR NVIC_ENABLE_IRQ(IRQ_FTM1)
#define TIMER_DISABLE_INTR NVIC_DISABLE_IRQ(IRQ_FTM1)
#define TIMER_INTR_NAME ftm1_isr
#ifdef ISR
#undef ISR
#endif
#define ISR(f) void f(void)
#define TIMER_CONFIG_KHZ(val) ({ \
SIM_SCGC6 |= SIM_SCGC6_TPM1; \
FTM1_SC = 0; \
FTM1_CNT = 0; \
FTM1_MOD = (F_PLL/2000) / val - 1; \
FTM1_C0V = (F_PLL/6000) / val - 1; \
FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0); \
})
#define TIMER_CONFIG_NORMAL() ({ \
SIM_SCGC6 |= SIM_SCGC6_TPM1; \
FTM1_SC = 0; \
FTM1_CNT = 0; \
FTM1_MOD = (F_PLL/40000) - 1; \
FTM1_C0V = 0; \
FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0) | FTM_SC_TOF | FTM_SC_TOIE; \
})
#define TIMER_PWM_PIN 16
// defines for timer_tiny0 (8 bits)
#elif defined(IR_USE_TIMER_TINY0)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR0A |= _BV(COM0B1))
#define TIMER_DISABLE_PWM (TCCR0A &= ~(_BV(COM0B1)))
#define TIMER_ENABLE_INTR (TIMSK |= _BV(OCIE0A))
#define TIMER_DISABLE_INTR (TIMSK &= ~(_BV(OCIE0A)))
#define TIMER_INTR_NAME TIMER0_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint8_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR0A = _BV(WGM00); \
TCCR0B = _BV(WGM02) | _BV(CS00); \
OCR0A = pwmval; \
OCR0B = pwmval / 3; \
})
#define TIMER_COUNT_TOP (SYSCLOCK * USECPERTICK / 1000000)
#if (TIMER_COUNT_TOP < 256)
#define TIMER_CONFIG_NORMAL() ({ \
TCCR0A = _BV(WGM01); \
TCCR0B = _BV(CS00); \
OCR0A = TIMER_COUNT_TOP; \
TCNT0 = 0; \
})
#else
#define TIMER_CONFIG_NORMAL() ({ \
TCCR0A = _BV(WGM01); \
TCCR0B = _BV(CS01); \
OCR0A = TIMER_COUNT_TOP / 8; \
TCNT0 = 0; \
})
#endif
#define TIMER_PWM_PIN 1 /* ATtiny85 */
//---------------------------------------------------------
// ESP32 (ESP8266 should likely be added here too)
//
// ESP32 has it own timer API and does not use these macros, but to avoid ifdef'ing
// them out in the common code, they are defined to no-op. This allows the code to compile
// (which it wouldn't otherwise) but irsend will not work until ESP32 specific code is written
// for that -- merlin
// As a warning, sending timing specific code from an ESP32 can be challenging if you need 100%
// reliability because the arduino code may be interrupted and cause your sent waveform to be the
// wrong length. This is specifically an issue for neopixels which require 800Khz resolution.
// IR may just work as is with the common code since it's lower frequency, but if not, the other
// way to do this on ESP32 is using the RMT built in driver like in this incomplete library below
// https://github.com/ExploreEmbedded/ESP32_RMT
#elif defined(IR_TIMER_USE_ESP32)
#define TIMER_RESET
#define TIMER_ENABLE_PWM
#define TIMER_DISABLE_PWM Serial.println("IRsend not implemented for ESP32 yet");
#define TIMER_ENABLE_INTR
#define TIMER_DISABLE_INTR
#define TIMER_INTR_NAME
//---------------------------------------------------------
// Unknown Timer
//
#else
# error "Internal code configuration error, no known IR_USE_TIMER# defined\n"
#endif
#endif // ! boarddefs_h

View File

@@ -1,3 +1,15 @@
## 2.4.3
- Added Philips Extended RC-5 protocol support [PR #522] (https://github.com/z3t0/Arduino-IRremote/pull/522)
## 2.3.3 - 2017/03/31
- Added ESP32 IR receive support [PR #427](https://github.com/z3t0/Arduino-IRremote/pull/425)
## 2.2.3 - 2017/03/27
- Fix calculation of pause length in LEGO PF protocol [PR #427](https://github.com/z3t0/Arduino-IRremote/pull/427)
## 2.2.2 - 2017/01/20
- Fixed naming bug [PR #398](https://github.com/z3t0/Arduino-IRremote/pull/398)
## 2.2.1 - 2016/07/27
- Added tests for Lego Power Functions Protocol [PR #336](https://github.com/z3t0/Arduino-IRremote/pull/336)

View File

@@ -126,7 +126,7 @@ void sendCode(int repeat) {
Serial.println(codeValue, HEX);
}
else if (codeType == JVC) {
irsend.sendPanasonic(codeValue, codeLen);
irsend.sendJVC(codeValue, codeLen, false);
Serial.print("Sent JVC");
Serial.println(codeValue, HEX);
}

View File

@@ -17,7 +17,11 @@ decode_results results;
void setup()
{
Serial.begin(9600);
// In case the interrupt driver crashes on setup, give a clue
// to the user what's going on.
Serial.println("Enabling IRin");
irrecv.enableIRIn(); // Start the receiver
Serial.println("Enabled IRin");
}
void loop() {

View File

@@ -15,7 +15,7 @@
* You can change this to another available Arduino Pin.
* Your IR receiver should be connected to the pin defined here
*/
int RECV_PIN = 11;
int RECV_PIN = 11;
IRrecv irrecv(RECV_PIN);

View File

@@ -66,7 +66,7 @@ void dumpInfo (decode_results *results)
{
// Check if the buffer overflowed
if (results->overflow) {
Serial.println("IR code too long. Edit IRremoteInt.h and increase RAWLEN");
Serial.println("IR code too long. Edit IRremoteInt.h and increase RAWBUF");
return;
}

View File

@@ -1,6 +1,6 @@
/*
* LegoPowerFunctionsTest: LEGO Power Functions Tests
* Copyright (c) 2016 Philipp Henkel
* Copyright (c) 2016, 2017 Philipp Henkel
*/
#include <ir_Lego_PF_BitStreamEncoder.h>
@@ -78,14 +78,14 @@ void testMessageBitCount(LegoPfBitStreamEncoder& bitStreamEncoder) {
logTestResult(bitCount == 18);
}
boolean check(LegoPfBitStreamEncoder& bitStreamEncoder, int markDuration, int pauseDuration) {
boolean check(LegoPfBitStreamEncoder& bitStreamEncoder, unsigned long markDuration, unsigned long pauseDuration) {
bool result = true;
result = result && bitStreamEncoder.getMarkDuration() == markDuration;
result = result && bitStreamEncoder.getPauseDuration() == pauseDuration;
return result;
}
boolean checkNext(LegoPfBitStreamEncoder& bitStreamEncoder, int markDuration, int pauseDuration) {
boolean checkNext(LegoPfBitStreamEncoder& bitStreamEncoder, unsigned long markDuration, unsigned long pauseDuration) {
bool result = bitStreamEncoder.next();
result = result && check(bitStreamEncoder, markDuration, pauseDuration);
return result;
@@ -129,16 +129,16 @@ void testMessage407Repeated(LegoPfBitStreamEncoder& bitStreamEncoder) {
bool result = true;
result = result && check(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026 + 5 * 16000 - 10844);
result = result && checkNext(bitStreamEncoder, 158, 1026L + 5L * 16000L - 10844L);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026 + 5 * 16000 - 10844);
result = result && checkNext(bitStreamEncoder, 158, 1026L + 5L * 16000L - 10844L);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026 + 8 * 16000 - 10844);
result = result && checkNext(bitStreamEncoder, 158, 1026L + 8L * 16000L - 10844L);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026 + 8 * 16000 - 10844);
result = result && checkNext(bitStreamEncoder, 158, 1026L + 8L * 16000L - 10844L);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026);
@@ -191,7 +191,3 @@ void testGetMessageLengthAllLow(LegoPfBitStreamEncoder& bitStreamEncoder) {
bitStreamEncoder.reset(0x0, false);
logTestResult(bitStreamEncoder.getMessageLength() == 9104);
}

513
irPronto.cpp Normal file
View File

@@ -0,0 +1,513 @@
#define TEST 0
#if TEST
# define SEND_PRONTO 1
# define PRONTO_ONCE false
# define PRONTO_REPEAT true
# define PRONTO_FALLBACK true
# define PRONTO_NOFALLBACK false
#endif
#if SEND_PRONTO
//******************************************************************************
#if TEST
# include <stdio.h>
void enableIROut (int freq) { printf("\nFreq = %d KHz\n", freq); }
void mark (int t) { printf("+%d," , t); }
void space (int t) { printf("-%d, ", t); }
#else
# include "IRremote.h"
#endif // TEST
//+=============================================================================
// Check for a valid hex digit
//
bool ishex (char ch)
{
return ( ((ch >= '0') && (ch <= '9')) ||
((ch >= 'A') && (ch <= 'F')) ||
((ch >= 'a') && (ch <= 'f')) ) ? true : false ;
}
//+=============================================================================
// Check for a valid "blank" ... '\0' is a valid "blank"
//
bool isblank (char ch)
{
return ((ch == ' ') || (ch == '\t') || (ch == '\0')) ? true : false ;
}
//+=============================================================================
// Bypass spaces
//
bool byp (char** pcp)
{
while (isblank(**pcp)) (*pcp)++ ;
}
//+=============================================================================
// Hex-to-Byte : Decode a hex digit
// We assume the character has already been validated
//
uint8_t htob (char ch)
{
if ((ch >= '0') && (ch <= '9')) return ch - '0' ;
if ((ch >= 'A') && (ch <= 'F')) return ch - 'A' + 10 ;
if ((ch >= 'a') && (ch <= 'f')) return ch - 'a' + 10 ;
}
//+=============================================================================
// Hex-to-Word : Decode a block of 4 hex digits
// We assume the string has already been validated
// and the pointer being passed points at the start of a block of 4 hex digits
//
uint16_t htow (char* cp)
{
return ( (htob(cp[0]) << 12) | (htob(cp[1]) << 8) |
(htob(cp[2]) << 4) | (htob(cp[3]) ) ) ;
}
//+=============================================================================
//
bool sendPronto (char* s, bool repeat, bool fallback)
{
int i;
int len;
int skip;
char* cp;
uint16_t freq; // Frequency in KHz
uint8_t usec; // pronto uSec/tick
uint8_t once;
uint8_t rpt;
// Validate the string
for (cp = s; *cp; cp += 4) {
byp(&cp);
if ( !ishex(cp[0]) || !ishex(cp[1]) ||
!ishex(cp[2]) || !ishex(cp[3]) || !isblank(cp[4]) ) return false ;
}
// We will use cp to traverse the string
cp = s;
// Check mode = Oscillated/Learned
byp(&cp);
if (htow(cp) != 0000) return false;
cp += 4;
// Extract & set frequency
byp(&cp);
freq = (int)(1000000 / (htow(cp) * 0.241246)); // Rounding errors will occur, tolerance is +/- 10%
usec = (int)(((1.0 / freq) * 1000000) + 0.5); // Another rounding error, thank Cod for analogue electronics
freq /= 1000; // This will introduce a(nother) rounding error which we do not want in the usec calcualtion
cp += 4;
// Get length of "once" code
byp(&cp);
once = htow(cp);
cp += 4;
// Get length of "repeat" code
byp(&cp);
rpt = htow(cp);
cp += 4;
// Which code are we sending?
if (fallback) { // fallback on the "other" code if "this" code is not present
if (!repeat) { // requested 'once'
if (once) len = once * 2, skip = 0 ; // if once exists send it
else len = rpt * 2, skip = 0 ; // else send repeat code
} else { // requested 'repeat'
if (rpt) len = rpt * 2, skip = 0 ; // if rpt exists send it
else len = once * 2, skip = 0 ; // else send once code
}
} else { // Send what we asked for, do not fallback if the code is empty!
if (!repeat) len = once * 2, skip = 0 ; // 'once' starts at 0
else len = rpt * 2, skip = once ; // 'repeat' starts where 'once' ends
}
// Skip to start of code
for (i = 0; i < skip; i++, cp += 4) byp(&cp) ;
// Send code
enableIROut(freq);
for (i = 0; i < len; i++) {
byp(&cp);
if (i & 1) space(htow(cp) * usec);
else mark (htow(cp) * usec);
cp += 4;
}
}
//+=============================================================================
#if TEST
int main ( )
{
char prontoTest[] =
"0000 0070 0000 0032 0080 0040 0010 0010 0010 0030 " // 10
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 20
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 30
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 40
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 50
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 60
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 70
"0010 0010 0010 0030 0010 0010 0010 0030 0010 0010 " // 80
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 90
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 100
"0010 0030 0010 0aa6"; // 104
sendPronto(prontoTest, PRONTO_ONCE, PRONTO_FALLBACK); // once code
sendPronto(prontoTest, PRONTO_REPEAT, PRONTO_FALLBACK); // repeat code
sendPronto(prontoTest, PRONTO_ONCE, PRONTO_NOFALLBACK); // once code
sendPronto(prontoTest, PRONTO_REPEAT, PRONTO_NOFALLBACK); // repeat code
return 0;
}
#endif // TEST
#endif // SEND_PRONTO
#if 0
//******************************************************************************
// Sources:
// http://www.remotecentral.com/features/irdisp2.htm
// http://www.hifi-remote.com/wiki/index.php?title=Working_With_Pronto_Hex
//******************************************************************************
#include <stdint.h>
#include <stdio.h>
#define IRPRONTO
#include "IRremoteInt.h" // The Arduino IRremote library defines USECPERTICK
//------------------------------------------------------------------------------
// Source: https://www.google.co.uk/search?q=DENON+MASTER+IR+Hex+Command+Sheet
// -> http://assets.denon.com/documentmaster/us/denon%20master%20ir%20hex.xls
//
char prontoTest[] =
"0000 0070 0000 0032 0080 0040 0010 0010 0010 0030 " // 10
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 20
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 30
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 40
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 50
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 60
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 70
"0010 0010 0010 0030 0010 0010 0010 0030 0010 0010 " // 80
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 90
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 100
"0010 0030 0010 0aa6"; // 104
//------------------------------------------------------------------------------
// This is the longest code we can support
#define CODEMAX 200
//------------------------------------------------------------------------------
// This is the data we pull out of the pronto code
typedef
struct {
int freq; // Carrier frequency (in Hz)
int usec; // uSec per tick (based on freq)
int codeLen; // Length of code
uint16_t code[CODEMAX]; // Code in hex
int onceLen; // Length of "once" transmit
uint16_t* once; // Pointer to start within 'code'
int rptLen; // Length of "repeat" transmit
uint16_t* rpt; // Pointer to start within 'code'
}
pronto_t;
//------------------------------------------------------------------------------
// From what I have seen, the only time we go over 8-bits is the 'space'
// on the end which creates the lead-out/inter-code gap. Assuming I'm right,
// we can code this up as a special case and otherwise halve the size of our
// data!
// Ignoring the first four values (the config data) and the last value
// (the lead-out), if you find a protocol that uses values greater than 00fe
// we are going to have to revisit this code!
//
//
// So, the 0th byte will be the carrier frequency in Khz (NOT Hz)
// " 1st " " " " length of the "once" code
// " 2nd " " " " length of the "repeat" code
//
// Thereafter, odd bytes will be Mark lengths as a multiple of USECPERTICK uS
// even " " " Space " " " " " " "
//
// Any occurence of "FF" in either a Mark or a Space will indicate
// "Use the 16-bit FF value" which will also be a multiple of USECPERTICK uS
//
//
// As a point of comparison, the test code (prontoTest[]) is 520 bytes
// (yes, more than 0.5KB of our Arduino's precious 32KB) ... after conversion
// to pronto hex that goes down to ((520/5)*2) = 208 bytes ... once converted to
// our format we are down to ((208/2) -1 -1 +2) = 104 bytes
//
// In fariness this is still very memory-hungry
// ...As a rough guide:
// 10 codes cost 1K of memory (this will vary depending on the protocol).
//
// So if you're building a complex remote control, you will probably need to
// keep the codes on an external memory device (not in the Arduino sketch) and
// load them as you need them. Hmmm.
//
// This dictates that "Oscillated Pronto Codes" are probably NOT the way forward
//
// For example, prontoTest[] happens to be: A 48-bit IR code in Denon format
// So we know it starts with 80/40 (Denon header)
// and ends with 10/aa6 (Denon leadout)
// and all (48) bits in between are either 10/10 (Denon 0)
// or 10/30 (Denon 1)
// So we could easily store this data in 1-byte ("Denon")
// + 1-byte (Length=48)
// + 6-bytes (IR code)
// At 8-bytes per code, we can store 128 codes in 1KB or memory - that's a lot
// better than the 2 (two) we started off with!
//
// And serendipitously, by reducing the amount of data, our program will run
// a LOT faster!
//
// Again, I repeat, even after you have spent time converting the "Oscillated
// Pronto Codes" in to IRremote format, it will be a LOT more memory-hungry
// than using sendDenon() (or whichever) ...BUT these codes are easily
// available on the internet, so we'll support them!
//
typedef
struct {
uint16_t FF;
uint8_t code[CODEMAX];
}
irCode_t;
//------------------------------------------------------------------------------
#define DEBUGF(...) printf(__VA_ARGS__)
//+=============================================================================
// String must be block of 4 hex digits separated with blanks
//
bool validate (char* cp, int* len)
{
for (*len = 0; *cp; (*len)++, cp += 4) {
byp(&cp);
if ( !ishex(cp[0]) || !ishex(cp[1]) ||
!ishex(cp[2]) || !ishex(cp[3]) || !isblank(cp[4]) ) return false ;
}
return true;
}
//+=============================================================================
// Hex-to-Byte : Decode a hex digit
// We assume the character has already been validated
//
uint8_t htob (char ch)
{
if ((ch >= '0') && (ch <= '9')) return ch - '0' ;
if ((ch >= 'A') && (ch <= 'F')) return ch - 'A' + 10 ;
if ((ch >= 'a') && (ch <= 'f')) return ch - 'a' + 10 ;
}
//+=============================================================================
// Hex-to-Word : Decode a block of 4 hex digits
// We assume the string has already been validated
// and the pointer being passed points at the start of a block of 4 hex digits
//
uint16_t htow (char* cp)
{
return ( (htob(cp[0]) << 12) | (htob(cp[1]) << 8) |
(htob(cp[2]) << 4) | (htob(cp[3]) ) ) ;
}
//+=============================================================================
// Convert the pronto string in to data
//
bool decode (char* s, pronto_t* p, irCode_t* ir)
{
int i, len;
char* cp;
// Validate the Pronto string
if (!validate(s, &p->codeLen)) {
DEBUGF("Invalid pronto string\n");
return false ;
}
DEBUGF("Found %d hex codes\n", p->codeLen);
// Allocate memory to store the decoded string
//if (!(p->code = malloc(p->len))) {
// DEBUGF("Memory allocation failed\n");
// return false ;
//}
// Check in case our code is too long
if (p->codeLen > CODEMAX) {
DEBUGF("Code too long, edit CODEMAX and recompile\n");
return false ;
}
// Decode the string
cp = s;
for (i = 0; i < p->codeLen; i++, cp += 4) {
byp(&cp);
p->code[i] = htow(cp);
}
// Announce our findings
DEBUGF("Input: |%s|\n", s);
DEBUGF("Found: |");
for (i = 0; i < p->codeLen; i++) DEBUGF("%04x ", p->code[i]) ;
DEBUGF("|\n");
DEBUGF("Form [%04X] : ", p->code[0]);
if (p->code[0] == 0x0000) DEBUGF("Oscillated (Learned)\n");
else if (p->code[0] == 0x0100) DEBUGF("Unmodulated\n");
else DEBUGF("Unknown\n");
if (p->code[0] != 0x0000) return false ; // Can only handle Oscillated
// Calculate the carrier frequency (+/- 10%) & uSecs per pulse
// Pronto uses a crystal which generates a timeabse of 0.241246
p->freq = (int)(1000000 / (p->code[1] * 0.241246));
p->usec = (int)(((1.0 / p->freq) * 1000000) + 0.5);
ir->code[0] = p->freq / 1000;
DEBUGF("Freq [%04X] : %d Hz (%d uS/pluse) -> %d KHz\n",
p->code[1], p->freq, p->usec, ir->code[0]);
// Set the length & start pointer for the "once" code
p->onceLen = p->code[2];
p->once = &p->code[4];
ir->code[1] = p->onceLen;
DEBUGF("Once [%04X] : %d\n", p->code[2], p->onceLen);
// Set the length & start pointer for the "repeat" code
p->rptLen = p->code[3];
p->rpt = &p->code[4 + p->onceLen];
ir->code[2] = p->rptLen;
DEBUGF("Rpt [%04X] : %d\n", p->code[3], p->rptLen);
// Check everything tallies
if (1 + 1 + 1 + 1 + (p->onceLen * 2) + (p->rptLen * 2) != p->codeLen) {
DEBUGF("Bad code length\n");
return false;
}
// Convert the IR data to our new format
ir->FF = p->code[p->codeLen - 1];
len = (p->onceLen * 2) + (p->rptLen * 2);
DEBUGF("Encoded: |");
for (i = 0; i < len; i++) {
if (p->code[i+4] == ir->FF) {
ir->code[i+3] = 0xFF;
} else if (p->code[i+4] > 0xFE) {
DEBUGF("\n%04X : Mark/Space overflow\n", p->code[i+4]);
return false;
} else {
ir->code[i+3] = (p->code[i+4] * p->usec) / USECPERTICK;
}
DEBUGF("%s%d", !i ? "" : (i&1 ? "," : ", "), ir->code[i+3]);
}
DEBUGF("|\n");
ir->FF = (ir->FF * p->usec) / USECPERTICK;
DEBUGF("FF -> %d\n", ir->FF);
return true;
}
//+=============================================================================
//
void irDump (irCode_t* ir)
{
int i, len;
printf("uint8_t buttonName[%d] = {", len);
printf("%d,%d, ", (ir->FF >> 8), ir->FF & 0xFF);
printf("%d,%d,%d, ", ir->code[0], ir->code[1], ir->code[2]);
len = (ir->code[1] * 2) + (ir->code[2] * 2);
for (i = 0; i < len; i++) {
printf("%s%d", !i ? "" : (i&1 ? "," : ", "), ir->code[i+3]);
}
printf("};\n");
}
//+=============================================================================
//
int main ( )
{
pronto_t pCode;
irCode_t irCode;
decode(prontoTest, &pCode, &irCode);
irDump(&irCode);
return 0;
}
#endif //0

View File

@@ -1,5 +1,10 @@
#include "IRremote.h"
#include "IRremoteInt.h"
#ifdef IR_TIMER_USE_ESP32
hw_timer_t *timer;
void IRTimer(); // defined in IRremote.cpp
#endif
//+=============================================================================
// Decodes the received IR message
@@ -117,6 +122,17 @@ IRrecv::IRrecv (int recvpin, int blinkpin)
//
void IRrecv::enableIRIn ( )
{
// Interrupt Service Routine - Fires every 50uS
#ifdef ESP32
// ESP32 has a proper API to setup timers, no weird chip macros needed
// simply call the readable API versions :)
// 3 timers, choose #1, 80 divider nanosecond precision, 1 to count up
timer = timerBegin(1, 80, 1);
timerAttachInterrupt(timer, &IRTimer, 1);
// every 50ns, autoreload = true
timerAlarmWrite(timer, 50, true);
timerAlarmEnable(timer);
#else
cli();
// Setup pulse clock timer interrupt
// Prescale /8 (16M/8 = 0.5 microseconds per tick)
@@ -130,6 +146,7 @@ void IRrecv::enableIRIn ( )
TIMER_RESET;
sei(); // enable interrupts
#endif
// Initialize state machine variables
irparams.rcvstate = STATE_IDLE;

View File

@@ -54,6 +54,8 @@ void IRsend::space (unsigned int time)
//
void IRsend::enableIROut (int khz)
{
// FIXME: implement ESP32 support, see IR_TIMER_USE_ESP32 in boarddefs.h
#ifndef ESP32
// Disable the Timer2 Interrupt (which is used for receiving IR)
TIMER_DISABLE_INTR; //Timer2 Overflow Interrupt
@@ -66,6 +68,7 @@ void IRsend::enableIROut (int khz)
// CS2 = 000: no prescaling
// The top value for the timer. The modulation frequency will be SYSCLOCK / 2 / OCR2A.
TIMER_CONFIG_KHZ(khz);
#endif
}
//+=============================================================================

105
ir_Aiwa.cpp Normal file
View File

@@ -0,0 +1,105 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// AAA IIIII W W AAA
// A A I W W A A
// AAAAA I W W W AAAAA
// A A I W W W A A
// A A IIIII WWW A A
//==============================================================================
// Based off the RC-T501 RCU
// Lirc file http://lirc.sourceforge.net/remotes/aiwa/RC-T501
#define AIWA_RC_T501_HZ 38
#define AIWA_RC_T501_BITS 15
#define AIWA_RC_T501_PRE_BITS 26
#define AIWA_RC_T501_POST_BITS 1
#define AIWA_RC_T501_SUM_BITS (AIWA_RC_T501_PRE_BITS + AIWA_RC_T501_BITS + AIWA_RC_T501_POST_BITS)
#define AIWA_RC_T501_HDR_MARK 8800
#define AIWA_RC_T501_HDR_SPACE 4500
#define AIWA_RC_T501_BIT_MARK 500
#define AIWA_RC_T501_ONE_SPACE 600
#define AIWA_RC_T501_ZERO_SPACE 1700
//+=============================================================================
#if SEND_AIWA_RC_T501
void IRsend::sendAiwaRCT501 (int code)
{
unsigned long pre = 0x0227EEC0; // 26-bits
// Set IR carrier frequency
enableIROut(AIWA_RC_T501_HZ);
// Header
mark(AIWA_RC_T501_HDR_MARK);
space(AIWA_RC_T501_HDR_SPACE);
// Send "pre" data
for (unsigned long mask = 1UL << (26 - 1); mask; mask >>= 1) {
mark(AIWA_RC_T501_BIT_MARK);
if (pre & mask) space(AIWA_RC_T501_ONE_SPACE) ;
else space(AIWA_RC_T501_ZERO_SPACE) ;
}
//-v- THIS CODE LOOKS LIKE IT MIGHT BE WRONG - CHECK!
// it only send 15bits and ignores the top bit
// then uses TOPBIT which is 0x80000000 to check the bit code
// I suspect TOPBIT should be changed to 0x00008000
// Skip first code bit
code <<= 1;
// Send code
for (int i = 0; i < 15; i++) {
mark(AIWA_RC_T501_BIT_MARK);
if (code & 0x80000000) space(AIWA_RC_T501_ONE_SPACE) ;
else space(AIWA_RC_T501_ZERO_SPACE) ;
code <<= 1;
}
//-^- THIS CODE LOOKS LIKE IT MIGHT BE WRONG - CHECK!
// POST-DATA, 1 bit, 0x0
mark(AIWA_RC_T501_BIT_MARK);
space(AIWA_RC_T501_ZERO_SPACE);
mark(AIWA_RC_T501_BIT_MARK);
space(0);
}
#endif
//+=============================================================================
#if DECODE_AIWA_RC_T501
bool IRrecv::decodeAiwaRCT501 (decode_results *results)
{
int data = 0;
int offset = 1;
// Check SIZE
if (irparams.rawlen < 2 * (AIWA_RC_T501_SUM_BITS) + 4) return false ;
// Check HDR Mark/Space
if (!MATCH_MARK (results->rawbuf[offset++], AIWA_RC_T501_HDR_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], AIWA_RC_T501_HDR_SPACE)) return false ;
offset += 26; // skip pre-data - optional
while(offset < irparams.rawlen - 4) {
if (MATCH_MARK(results->rawbuf[offset], AIWA_RC_T501_BIT_MARK)) offset++ ;
else return false ;
// ONE & ZERO
if (MATCH_SPACE(results->rawbuf[offset], AIWA_RC_T501_ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], AIWA_RC_T501_ZERO_SPACE)) data = (data << 1) | 0 ;
else break ; // End of one & zero detected
offset++;
}
results->bits = (offset - 1) / 2;
if (results->bits < 42) return false ;
results->value = data;
results->decode_type = AIWA_RC_T501;
return true;
}
#endif

94
ir_Denon.cpp Normal file
View File

@@ -0,0 +1,94 @@
#include "IRremote.h"
#include "IRremoteInt.h"
// Reverse Engineered by looking at RAW dumps generated by IRremote
// I have since discovered that Denon publish all their IR codes:
// https://www.google.co.uk/search?q=DENON+MASTER+IR+Hex+Command+Sheet
// -> http://assets.denon.com/documentmaster/us/denon%20master%20ir%20hex.xls
// Having looked at the official Denon Pronto sheet and reverse engineered
// the timing values from it, it is obvious that Denon have a range of
// different timings and protocols ...the values here work for my AVR-3801 Amp!
//==============================================================================
// DDDD EEEEE N N OOO N N
// D D E NN N O O NN N
// D D EEE N N N O O N N N
// D D E N NN O O N NN
// DDDD EEEEE N N OOO N N
//==============================================================================
#define BITS 14 // The number of bits in the command
#define HDR_MARK 300 // The length of the Header:Mark
#define HDR_SPACE 750 // The lenght of the Header:Space
#define BIT_MARK 300 // The length of a Bit:Mark
#define ONE_SPACE 1800 // The length of a Bit:Space for 1's
#define ZERO_SPACE 750 // The length of a Bit:Space for 0's
//+=============================================================================
//
#if SEND_DENON
void IRsend::sendDenon (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark (HDR_MARK);
space(HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark (BIT_MARK);
space(ONE_SPACE);
} else {
mark (BIT_MARK);
space(ZERO_SPACE);
}
}
// Footer
mark(BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
//
#if DECODE_DENON
bool IRrecv::decodeDenon (decode_results *results)
{
unsigned long data = 0; // Somewhere to build our code
int offset = 1; // Skip the Gap reading
// Check we have the right amount of data
if (irparams.rawlen != 1 + 2 + (2 * BITS) + 1) return false ;
// Check initial Mark+Space match
if (!MATCH_MARK (results->rawbuf[offset++], HDR_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], HDR_SPACE)) return false ;
// Read the bits in
for (int i = 0; i < BITS; i++) {
// Each bit looks like: MARK + SPACE_1 -> 1
// or : MARK + SPACE_0 -> 0
if (!MATCH_MARK(results->rawbuf[offset++], BIT_MARK)) return false ;
// IR data is big-endian, so we shuffle it in from the right:
if (MATCH_SPACE(results->rawbuf[offset], ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = BITS;
results->value = data;
results->decode_type = DENON;
return true;
}
#endif

54
ir_Dish.cpp Normal file
View File

@@ -0,0 +1,54 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// DDDD IIIII SSSS H H
// D D I S H H
// D D I SSS HHHHH
// D D I S H H
// DDDD IIIII SSSS H H
//==============================================================================
// Sharp and DISH support by Todd Treece ( http://unionbridge.org/design/ircommand )
//
// The sned function needs to be repeated 4 times
//
// Only send the last for characters of the hex.
// I.E. Use 0x1C10 instead of 0x0000000000001C10 as listed in the LIRC file.
//
// Here is the LIRC file I found that seems to match the remote codes from the
// oscilloscope:
// DISH NETWORK (echostar 301):
// http://lirc.sourceforge.net/remotes/echostar/301_501_3100_5100_58xx_59xx
#define DISH_BITS 16
#define DISH_HDR_MARK 400
#define DISH_HDR_SPACE 6100
#define DISH_BIT_MARK 400
#define DISH_ONE_SPACE 1700
#define DISH_ZERO_SPACE 2800
#define DISH_RPT_SPACE 6200
//+=============================================================================
#if SEND_DISH
void IRsend::sendDISH (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(56);
mark(DISH_HDR_MARK);
space(DISH_HDR_SPACE);
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(DISH_BIT_MARK);
space(DISH_ONE_SPACE);
} else {
mark(DISH_BIT_MARK);
space(DISH_ZERO_SPACE);
}
}
mark(DISH_HDR_MARK); //added 26th March 2016, by AnalysIR ( https://www.AnalysIR.com )
}
#endif

101
ir_JVC.cpp Normal file
View File

@@ -0,0 +1,101 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// JJJJJ V V CCCC
// J V V C
// J V V C
// J J V V C
// J V CCCC
//==============================================================================
#define JVC_BITS 16
#define JVC_HDR_MARK 8000
#define JVC_HDR_SPACE 4000
#define JVC_BIT_MARK 600
#define JVC_ONE_SPACE 1600
#define JVC_ZERO_SPACE 550
#define JVC_RPT_LENGTH 60000
//+=============================================================================
// JVC does NOT repeat by sending a separate code (like NEC does).
// The JVC protocol repeats by skipping the header.
// To send a JVC repeat signal, send the original code value
// and set 'repeat' to true
//
#if SEND_JVC
void IRsend::sendJVC (unsigned long data, int nbits, bool repeat)
{
// Set IR carrier frequency
enableIROut(38);
// Only send the Header if this is NOT a repeat command
if (!repeat){
mark(JVC_HDR_MARK);
space(JVC_HDR_SPACE);
}
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(JVC_BIT_MARK);
space(JVC_ONE_SPACE);
} else {
mark(JVC_BIT_MARK);
space(JVC_ZERO_SPACE);
}
}
// Footer
mark(JVC_BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_JVC
bool IRrecv::decodeJVC (decode_results *results)
{
long data = 0;
int offset = 1; // Skip first space
// Check for repeat
if ( (irparams.rawlen - 1 == 33)
&& MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK)
&& MATCH_MARK(results->rawbuf[irparams.rawlen-1], JVC_BIT_MARK)
) {
results->bits = 0;
results->value = REPEAT;
results->decode_type = JVC;
return true;
}
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset++], JVC_HDR_MARK)) return false ;
if (irparams.rawlen < (2 * JVC_BITS) + 1 ) return false ;
// Initial space
if (!MATCH_SPACE(results->rawbuf[offset++], JVC_HDR_SPACE)) return false ;
for (int i = 0; i < JVC_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], JVC_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset], JVC_ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], JVC_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Stop bit
if (!MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK)) return false ;
// Success
results->bits = JVC_BITS;
results->value = data;
results->decode_type = JVC;
return true;
}
#endif

80
ir_LG.cpp Normal file
View File

@@ -0,0 +1,80 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// L GGGG
// L G
// L G GG
// L G G
// LLLLL GGG
//==============================================================================
#define LG_BITS 28
#define LG_HDR_MARK 8000
#define LG_HDR_SPACE 4000
#define LG_BIT_MARK 600
#define LG_ONE_SPACE 1600
#define LG_ZERO_SPACE 550
#define LG_RPT_LENGTH 60000
//+=============================================================================
#if DECODE_LG
bool IRrecv::decodeLG (decode_results *results)
{
long data = 0;
int offset = 1; // Skip first space
// Check we have the right amount of data
if (irparams.rawlen < (2 * LG_BITS) + 1 ) return false ;
// Initial mark/space
if (!MATCH_MARK(results->rawbuf[offset++], LG_HDR_MARK)) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], LG_HDR_SPACE)) return false ;
for (int i = 0; i < LG_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], LG_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset], LG_ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], LG_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Stop bit
if (!MATCH_MARK(results->rawbuf[offset], LG_BIT_MARK)) return false ;
// Success
results->bits = LG_BITS;
results->value = data;
results->decode_type = LG;
return true;
}
#endif
//+=============================================================================
#if SEND_LG
void IRsend::sendLG (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark(LG_HDR_MARK);
space(LG_HDR_SPACE);
mark(LG_BIT_MARK);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
space(LG_ONE_SPACE);
mark(LG_BIT_MARK);
} else {
space(LG_ZERO_SPACE);
mark(LG_BIT_MARK);
}
}
space(0); // Always end with the LED off
}
#endif

46
ir_Lego_PF.cpp Normal file
View File

@@ -0,0 +1,46 @@
#include "IRremote.h"
#include "IRremoteInt.h"
#include "ir_Lego_PF_BitStreamEncoder.h"
//==============================================================================
// L EEEEEE EEEE OOOO
// L E E O O
// L EEEE E EEE O O
// L E E E O O LEGO Power Functions
// LLLLLL EEEEEE EEEE OOOO Copyright (c) 2016 Philipp Henkel
//==============================================================================
// Supported Devices
// LEGO® Power Functions IR Receiver 8884
//+=============================================================================
//
#if SEND_LEGO_PF
#if DEBUG
namespace {
void logFunctionParameters(uint16_t data, bool repeat) {
DBG_PRINT("sendLegoPowerFunctions(data=");
DBG_PRINT(data);
DBG_PRINT(", repeat=");
DBG_PRINTLN(repeat?"true)" : "false)");
}
} // anonymous namespace
#endif // DEBUG
void IRsend::sendLegoPowerFunctions(uint16_t data, bool repeat)
{
#if DEBUG
::logFunctionParameters(data, repeat);
#endif // DEBUG
enableIROut(38);
static LegoPfBitStreamEncoder bitStreamEncoder;
bitStreamEncoder.reset(data, repeat);
do {
mark(bitStreamEncoder.getMarkDuration());
space(bitStreamEncoder.getPauseDuration());
} while (bitStreamEncoder.next());
}
#endif // SEND_LEGO_PF

View File

@@ -0,0 +1,115 @@
//==============================================================================
// L EEEEEE EEEE OOOO
// L E E O O
// L EEEE E EEE O O
// L E E E O O LEGO Power Functions
// LLLLLL EEEEEE EEEE OOOO Copyright (c) 2016, 2017 Philipp Henkel
//==============================================================================
//+=============================================================================
//
class LegoPfBitStreamEncoder {
private:
uint16_t data;
bool repeatMessage;
uint8_t messageBitIdx;
uint8_t repeatCount;
uint16_t messageLength;
public:
// HIGH data bit = IR mark + high pause
// LOW data bit = IR mark + low pause
static const uint16_t LOW_BIT_DURATION = 421;
static const uint16_t HIGH_BIT_DURATION = 711;
static const uint16_t START_BIT_DURATION = 1184;
static const uint16_t STOP_BIT_DURATION = 1184;
static const uint8_t IR_MARK_DURATION = 158;
static const uint16_t HIGH_PAUSE_DURATION = HIGH_BIT_DURATION - IR_MARK_DURATION;
static const uint16_t LOW_PAUSE_DURATION = LOW_BIT_DURATION - IR_MARK_DURATION;
static const uint16_t START_PAUSE_DURATION = START_BIT_DURATION - IR_MARK_DURATION;
static const uint16_t STOP_PAUSE_DURATION = STOP_BIT_DURATION - IR_MARK_DURATION;
static const uint8_t MESSAGE_BITS = 18;
static const uint16_t MAX_MESSAGE_LENGTH = 16000;
void reset(uint16_t data, bool repeatMessage) {
this->data = data;
this->repeatMessage = repeatMessage;
messageBitIdx = 0;
repeatCount = 0;
messageLength = getMessageLength();
}
int getChannelId() const { return 1 + ((data >> 12) & 0x3); }
uint16_t getMessageLength() const {
// Sum up all marks
uint16_t length = MESSAGE_BITS * IR_MARK_DURATION;
// Sum up all pauses
length += START_PAUSE_DURATION;
for (unsigned long mask = 1UL << 15; mask; mask >>= 1) {
if (data & mask) {
length += HIGH_PAUSE_DURATION;
} else {
length += LOW_PAUSE_DURATION;
}
}
length += STOP_PAUSE_DURATION;
return length;
}
boolean next() {
messageBitIdx++;
if (messageBitIdx >= MESSAGE_BITS) {
repeatCount++;
messageBitIdx = 0;
}
if (repeatCount >= 1 && !repeatMessage) {
return false;
} else if (repeatCount >= 5) {
return false;
} else {
return true;
}
}
uint8_t getMarkDuration() const { return IR_MARK_DURATION; }
uint32_t getPauseDuration() const {
if (messageBitIdx == 0)
return START_PAUSE_DURATION;
else if (messageBitIdx < MESSAGE_BITS - 1) {
return getDataBitPause();
} else {
return getStopPause();
}
}
private:
uint16_t getDataBitPause() const {
const int pos = MESSAGE_BITS - 2 - messageBitIdx;
const bool isHigh = data & (1 << pos);
return isHigh ? HIGH_PAUSE_DURATION : LOW_PAUSE_DURATION;
}
uint32_t getStopPause() const {
if (repeatMessage) {
return getRepeatStopPause();
} else {
return STOP_PAUSE_DURATION;
}
}
uint32_t getRepeatStopPause() const {
if (repeatCount == 0 || repeatCount == 1) {
return STOP_PAUSE_DURATION + (uint32_t)5 * MAX_MESSAGE_LENGTH - messageLength;
} else if (repeatCount == 2 || repeatCount == 3) {
return STOP_PAUSE_DURATION
+ (uint32_t)(6 + 2 * getChannelId()) * MAX_MESSAGE_LENGTH - messageLength;
} else {
return STOP_PAUSE_DURATION;
}
}
};

85
ir_Mitsubishi.cpp Normal file
View File

@@ -0,0 +1,85 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// MMMMM IIIII TTTTT SSSS U U BBBB IIIII SSSS H H IIIII
// M M M I T S U U B B I S H H I
// M M M I T SSS U U BBBB I SSS HHHHH I
// M M I T S U U B B I S H H I
// M M IIIII T SSSS UUU BBBBB IIIII SSSS H H IIIII
//==============================================================================
// Looks like Sony except for timings, 48 chars of data and time/space different
#define MITSUBISHI_BITS 16
// Mitsubishi RM 75501
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
// #define MITSUBISHI_HDR_MARK 250 // seen range 3500
#define MITSUBISHI_HDR_SPACE 350 // 7*50+100
#define MITSUBISHI_ONE_MARK 1950 // 41*50-100
#define MITSUBISHI_ZERO_MARK 750 // 17*50-100
// #define MITSUBISHI_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
// #define MITSUBISHI_RPT_LENGTH 45000
//+=============================================================================
#if DECODE_MITSUBISHI
bool IRrecv::decodeMitsubishi (decode_results *results)
{
// Serial.print("?!? decoding Mitsubishi:");Serial.print(irparams.rawlen); Serial.print(" want "); Serial.println( 2 * MITSUBISHI_BITS + 2);
long data = 0;
if (irparams.rawlen < 2 * MITSUBISHI_BITS + 2) return false ;
int offset = 0; // Skip first space
// Initial space
#if 0
// Put this back in for debugging - note can't use #DEBUG as if Debug on we don't see the repeat cos of the delay
Serial.print("IR Gap: ");
Serial.println( results->rawbuf[offset]);
Serial.println( "test against:");
Serial.println(results->rawbuf[offset]);
#endif
#if 0
// Not seeing double keys from Mitsubishi
if (results->rawbuf[offset] < MITSUBISHI_DOUBLE_SPACE_USECS) {
// Serial.print("IR Gap found: ");
results->bits = 0;
results->value = REPEAT;
results->decode_type = MITSUBISHI;
return true;
}
#endif
offset++;
// Typical
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
// Initial Space
if (!MATCH_MARK(results->rawbuf[offset], MITSUBISHI_HDR_SPACE)) return false ;
offset++;
while (offset + 1 < irparams.rawlen) {
if (MATCH_MARK(results->rawbuf[offset], MITSUBISHI_ONE_MARK)) data = (data << 1) | 1 ;
else if (MATCH_MARK(results->rawbuf[offset], MITSUBISHI_ZERO_MARK)) data <<= 1 ;
else return false ;
offset++;
if (!MATCH_SPACE(results->rawbuf[offset], MITSUBISHI_HDR_SPACE)) break ;
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < MITSUBISHI_BITS) {
results->bits = 0;
return false;
}
results->value = data;
results->decode_type = MITSUBISHI;
return true;
}
#endif

98
ir_NEC.cpp Normal file
View File

@@ -0,0 +1,98 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// N N EEEEE CCCC
// NN N E C
// N N N EEE C
// N NN E C
// N N EEEEE CCCC
//==============================================================================
#define NEC_BITS 32
#define NEC_HDR_MARK 9000
#define NEC_HDR_SPACE 4500
#define NEC_BIT_MARK 560
#define NEC_ONE_SPACE 1690
#define NEC_ZERO_SPACE 560
#define NEC_RPT_SPACE 2250
//+=============================================================================
#if SEND_NEC
void IRsend::sendNEC (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark(NEC_HDR_MARK);
space(NEC_HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(NEC_BIT_MARK);
space(NEC_ONE_SPACE);
} else {
mark(NEC_BIT_MARK);
space(NEC_ZERO_SPACE);
}
}
// Footer
mark(NEC_BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
// NECs have a repeat only 4 items long
//
#if DECODE_NEC
bool IRrecv::decodeNEC (decode_results *results)
{
long data = 0; // We decode in to here; Start with nothing
int offset = 1; // Index in to results; Skip first entry!?
// Check header "mark"
if (!MATCH_MARK(results->rawbuf[offset], NEC_HDR_MARK)) return false ;
offset++;
// Check for repeat
if ( (irparams.rawlen == 4)
&& MATCH_SPACE(results->rawbuf[offset ], NEC_RPT_SPACE)
&& MATCH_MARK (results->rawbuf[offset+1], NEC_BIT_MARK )
) {
results->bits = 0;
results->value = REPEAT;
results->decode_type = NEC;
return true;
}
// Check we have enough data
if (irparams.rawlen < (2 * NEC_BITS) + 4) return false ;
// Check header "space"
if (!MATCH_SPACE(results->rawbuf[offset], NEC_HDR_SPACE)) return false ;
offset++;
// Build the data
for (int i = 0; i < NEC_BITS; i++) {
// Check data "mark"
if (!MATCH_MARK(results->rawbuf[offset], NEC_BIT_MARK)) return false ;
offset++;
// Suppend this bit
if (MATCH_SPACE(results->rawbuf[offset], NEC_ONE_SPACE )) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], NEC_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = NEC_BITS;
results->value = data;
results->decode_type = NEC;
return true;
}
#endif

78
ir_Panasonic.cpp Normal file
View File

@@ -0,0 +1,78 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// PPPP AAA N N AAA SSSS OOO N N IIIII CCCC
// P P A A NN N A A S O O NN N I C
// PPPP AAAAA N N N AAAAA SSS O O N N N I C
// P A A N NN A A S O O N NN I C
// P A A N N A A SSSS OOO N N IIIII CCCC
//==============================================================================
#define PANASONIC_BITS 48
#define PANASONIC_HDR_MARK 3502
#define PANASONIC_HDR_SPACE 1750
#define PANASONIC_BIT_MARK 502
#define PANASONIC_ONE_SPACE 1244
#define PANASONIC_ZERO_SPACE 400
//+=============================================================================
#if SEND_PANASONIC
void IRsend::sendPanasonic (unsigned int address, unsigned long data)
{
// Set IR carrier frequency
enableIROut(35);
// Header
mark(PANASONIC_HDR_MARK);
space(PANASONIC_HDR_SPACE);
// Address
for (unsigned long mask = 1UL << (16 - 1); mask; mask >>= 1) {
mark(PANASONIC_BIT_MARK);
if (address & mask) space(PANASONIC_ONE_SPACE) ;
else space(PANASONIC_ZERO_SPACE) ;
}
// Data
for (unsigned long mask = 1UL << (32 - 1); mask; mask >>= 1) {
mark(PANASONIC_BIT_MARK);
if (data & mask) space(PANASONIC_ONE_SPACE) ;
else space(PANASONIC_ZERO_SPACE) ;
}
// Footer
mark(PANASONIC_BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_PANASONIC
bool IRrecv::decodePanasonic (decode_results *results)
{
unsigned long long data = 0;
int offset = 1;
if (!MATCH_MARK(results->rawbuf[offset++], PANASONIC_HDR_MARK )) return false ;
if (!MATCH_MARK(results->rawbuf[offset++], PANASONIC_HDR_SPACE)) return false ;
// decode address
for (int i = 0; i < PANASONIC_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], PANASONIC_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset],PANASONIC_ONE_SPACE )) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset],PANASONIC_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
results->value = (unsigned long)data;
results->address = (unsigned int)(data >> 32);
results->decode_type = PANASONIC;
results->bits = PANASONIC_BITS;
return true;
}
#endif

274
ir_RC5_RC6.cpp Normal file
View File

@@ -0,0 +1,274 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//+=============================================================================
// Gets one undecoded level at a time from the raw buffer.
// The RC5/6 decoding is easier if the data is broken into time intervals.
// E.g. if the buffer has MARK for 2 time intervals and SPACE for 1,
// successive calls to getRClevel will return MARK, MARK, SPACE.
// offset and used are updated to keep track of the current position.
// t1 is the time interval for a single bit in microseconds.
// Returns -1 for error (measured time interval is not a multiple of t1).
//
#if (DECODE_RC5 || DECODE_RC6)
int IRrecv::getRClevel (decode_results *results, int *offset, int *used, int t1)
{
int width;
int val;
int correction;
int avail;
if (*offset >= results->rawlen) return SPACE ; // After end of recorded buffer, assume SPACE.
width = results->rawbuf[*offset];
val = ((*offset) % 2) ? MARK : SPACE;
correction = (val == MARK) ? MARK_EXCESS : - MARK_EXCESS;
if (MATCH(width, ( t1) + correction)) avail = 1 ;
else if (MATCH(width, (2*t1) + correction)) avail = 2 ;
else if (MATCH(width, (3*t1) + correction)) avail = 3 ;
else return -1 ;
(*used)++;
if (*used >= avail) {
*used = 0;
(*offset)++;
}
DBG_PRINTLN( (val == MARK) ? "MARK" : "SPACE" );
return val;
}
#endif
//==============================================================================
// RRRR CCCC 55555
// R R C 5
// RRRR C 5555
// R R C 5
// R R CCCC 5555
//
// NB: First bit must be a one (start bit)
//
#define MIN_RC5_SAMPLES 11
#define RC5_T1 889
#define RC5_RPT_LENGTH 46000
//+=============================================================================
#if SEND_RC5
void IRsend::sendRC5 (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(36);
// Start
mark(RC5_T1);
space(RC5_T1);
mark(RC5_T1);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
space(RC5_T1); // 1 is space, then mark
mark(RC5_T1);
} else {
mark(RC5_T1);
space(RC5_T1);
}
}
space(0); // Always end with the LED off
}
void IRsend::sendRC5ext (unsigned long addr, unsigned long cmd, boolean toggle)
{
// Set IR carrier frequency
enableIROut(36);
unsigned long addressBits = 5;
unsigned long commandBits = 7;
unsigned long nbits = addressBits + commandBits;
// Start
mark(RC5_T1);
// Bit #6 of the command part, but inverted!
unsigned long cmdBit6 = (1UL << (commandBits-1)) & cmd;
if (cmdBit6) {
// Inverted (1 -> 0 = mark-to-space)
mark(RC5_T1);
space(RC5_T1);
} else {
space(RC5_T1);
mark(RC5_T1);
}
commandBits--;
// Toggle bit
static int toggleBit = 1;
if (toggle) {
if (toggleBit == 0) {
toggleBit = 1;
} else {
toggleBit = 0;
}
}
if (toggleBit) {
space(RC5_T1);
mark(RC5_T1);
} else {
mark(RC5_T1);
space(RC5_T1);
}
// Address
for (unsigned long mask = 1UL << (addressBits - 1); mask; mask >>= 1) {
if (addr & mask) {
space(RC5_T1); // 1 is space, then mark
mark(RC5_T1);
} else {
mark(RC5_T1);
space(RC5_T1);
}
}
// Command
for (unsigned long mask = 1UL << (commandBits - 1); mask; mask >>= 1) {
if (cmd & mask) {
space(RC5_T1); // 1 is space, then mark
mark(RC5_T1);
} else {
mark(RC5_T1);
space(RC5_T1);
}
}
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_RC5
bool IRrecv::decodeRC5 (decode_results *results)
{
int nbits;
long data = 0;
int used = 0;
int offset = 1; // Skip gap space
if (irparams.rawlen < MIN_RC5_SAMPLES + 2) return false ;
// Get start bits
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return false ;
if (getRClevel(results, &offset, &used, RC5_T1) != SPACE) return false ;
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return false ;
for (nbits = 0; offset < irparams.rawlen; nbits++) {
int levelA = getRClevel(results, &offset, &used, RC5_T1);
int levelB = getRClevel(results, &offset, &used, RC5_T1);
if ((levelA == SPACE) && (levelB == MARK )) data = (data << 1) | 1 ;
else if ((levelA == MARK ) && (levelB == SPACE)) data = (data << 1) | 0 ;
else return false ;
}
// Success
results->bits = nbits;
results->value = data;
results->decode_type = RC5;
return true;
}
#endif
//+=============================================================================
// RRRR CCCC 6666
// R R C 6
// RRRR C 6666
// R R C 6 6
// R R CCCC 666
//
// NB : Caller needs to take care of flipping the toggle bit
//
#define MIN_RC6_SAMPLES 1
#define RC6_HDR_MARK 2666
#define RC6_HDR_SPACE 889
#define RC6_T1 444
#define RC6_RPT_LENGTH 46000
#if SEND_RC6
void IRsend::sendRC6 (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(36);
// Header
mark(RC6_HDR_MARK);
space(RC6_HDR_SPACE);
// Start bit
mark(RC6_T1);
space(RC6_T1);
// Data
for (unsigned long i = 1, mask = 1UL << (nbits - 1); mask; i++, mask >>= 1) {
// The fourth bit we send is a "double width trailer bit"
int t = (i == 4) ? (RC6_T1 * 2) : (RC6_T1) ;
if (data & mask) {
mark(t);
space(t);
} else {
space(t);
mark(t);
}
}
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_RC6
bool IRrecv::decodeRC6 (decode_results *results)
{
int nbits;
long data = 0;
int used = 0;
int offset = 1; // Skip first space
if (results->rawlen < MIN_RC6_SAMPLES) return false ;
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset++], RC6_HDR_MARK)) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], RC6_HDR_SPACE)) return false ;
// Get start bit (1)
if (getRClevel(results, &offset, &used, RC6_T1) != MARK) return false ;
if (getRClevel(results, &offset, &used, RC6_T1) != SPACE) return false ;
for (nbits = 0; offset < results->rawlen; nbits++) {
int levelA, levelB; // Next two levels
levelA = getRClevel(results, &offset, &used, RC6_T1);
if (nbits == 3) {
// T bit is double wide; make sure second half matches
if (levelA != getRClevel(results, &offset, &used, RC6_T1)) return false;
}
levelB = getRClevel(results, &offset, &used, RC6_T1);
if (nbits == 3) {
// T bit is double wide; make sure second half matches
if (levelB != getRClevel(results, &offset, &used, RC6_T1)) return false;
}
if ((levelA == MARK ) && (levelB == SPACE)) data = (data << 1) | 1 ; // inverted compared to RC5
else if ((levelA == SPACE) && (levelB == MARK )) data = (data << 1) | 0 ; // ...
else return false ; // Error
}
// Success
results->bits = nbits;
results->value = data;
results->decode_type = RC6;
return true;
}
#endif

92
ir_Samsung.cpp Normal file
View File

@@ -0,0 +1,92 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// SSSS AAA MMM SSSS U U N N GGGG
// S A A M M M S U U NN N G
// SSS AAAAA M M M SSS U U N N N G GG
// S A A M M S U U N NN G G
// SSSS A A M M SSSS UUU N N GGG
//==============================================================================
#define SAMSUNG_BITS 32
#define SAMSUNG_HDR_MARK 5000
#define SAMSUNG_HDR_SPACE 5000
#define SAMSUNG_BIT_MARK 560
#define SAMSUNG_ONE_SPACE 1600
#define SAMSUNG_ZERO_SPACE 560
#define SAMSUNG_RPT_SPACE 2250
//+=============================================================================
#if SEND_SAMSUNG
void IRsend::sendSAMSUNG (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark(SAMSUNG_HDR_MARK);
space(SAMSUNG_HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(SAMSUNG_BIT_MARK);
space(SAMSUNG_ONE_SPACE);
} else {
mark(SAMSUNG_BIT_MARK);
space(SAMSUNG_ZERO_SPACE);
}
}
// Footer
mark(SAMSUNG_BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
// SAMSUNGs have a repeat only 4 items long
//
#if DECODE_SAMSUNG
bool IRrecv::decodeSAMSUNG (decode_results *results)
{
long data = 0;
int offset = 1; // Skip first space
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], SAMSUNG_HDR_MARK)) return false ;
offset++;
// Check for repeat
if ( (irparams.rawlen == 4)
&& MATCH_SPACE(results->rawbuf[offset], SAMSUNG_RPT_SPACE)
&& MATCH_MARK(results->rawbuf[offset+1], SAMSUNG_BIT_MARK)
) {
results->bits = 0;
results->value = REPEAT;
results->decode_type = SAMSUNG;
return true;
}
if (irparams.rawlen < (2 * SAMSUNG_BITS) + 4) return false ;
// Initial space
if (!MATCH_SPACE(results->rawbuf[offset++], SAMSUNG_HDR_SPACE)) return false ;
for (int i = 0; i < SAMSUNG_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], SAMSUNG_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset], SAMSUNG_ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], SAMSUNG_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = SAMSUNG_BITS;
results->value = data;
results->decode_type = SAMSUNG;
return true;
}
#endif

76
ir_Sanyo.cpp Normal file
View File

@@ -0,0 +1,76 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// SSSS AAA N N Y Y OOO
// S A A NN N Y Y O O
// SSS AAAAA N N N Y O O
// S A A N NN Y O O
// SSSS A A N N Y OOO
//==============================================================================
// I think this is a Sanyo decoder: Serial = SA 8650B
// Looks like Sony except for timings, 48 chars of data and time/space different
#define SANYO_BITS 12
#define SANYO_HDR_MARK 3500 // seen range 3500
#define SANYO_HDR_SPACE 950 // seen 950
#define SANYO_ONE_MARK 2400 // seen 2400
#define SANYO_ZERO_MARK 700 // seen 700
#define SANYO_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
#define SANYO_RPT_LENGTH 45000
//+=============================================================================
#if DECODE_SANYO
bool IRrecv::decodeSanyo (decode_results *results)
{
long data = 0;
int offset = 0; // Skip first space <-- CHECK THIS!
if (irparams.rawlen < (2 * SANYO_BITS) + 2) return false ;
#if 0
// Put this back in for debugging - note can't use #DEBUG as if Debug on we don't see the repeat cos of the delay
Serial.print("IR Gap: ");
Serial.println( results->rawbuf[offset]);
Serial.println( "test against:");
Serial.println(results->rawbuf[offset]);
#endif
// Initial space
if (results->rawbuf[offset] < SANYO_DOUBLE_SPACE_USECS) {
//Serial.print("IR Gap found: ");
results->bits = 0;
results->value = REPEAT;
results->decode_type = SANYO;
return true;
}
offset++;
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset++], SANYO_HDR_MARK)) return false ;
// Skip Second Mark
if (!MATCH_MARK(results->rawbuf[offset++], SANYO_HDR_MARK)) return false ;
while (offset + 1 < irparams.rawlen) {
if (!MATCH_SPACE(results->rawbuf[offset++], SANYO_HDR_SPACE)) break ;
if (MATCH_MARK(results->rawbuf[offset], SANYO_ONE_MARK)) data = (data << 1) | 1 ;
else if (MATCH_MARK(results->rawbuf[offset], SANYO_ZERO_MARK)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < 12) {
results->bits = 0;
return false;
}
results->value = data;
results->decode_type = SANYO;
return true;
}
#endif

71
ir_Sharp.cpp Normal file
View File

@@ -0,0 +1,71 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// SSSS H H AAA RRRR PPPP
// S H H A A R R P P
// SSS HHHHH AAAAA RRRR PPPP
// S H H A A R R P
// SSSS H H A A R R P
//==============================================================================
// Sharp and DISH support by Todd Treece: http://unionbridge.org/design/ircommand
//
// The send function has the necessary repeat built in because of the need to
// invert the signal.
//
// Sharp protocol documentation:
// http://www.sbprojects.com/knowledge/ir/sharp.htm
//
// Here is the LIRC file I found that seems to match the remote codes from the
// oscilloscope:
// Sharp LCD TV:
// http://lirc.sourceforge.net/remotes/sharp/GA538WJSA
#define SHARP_BITS 15
#define SHARP_BIT_MARK 245
#define SHARP_ONE_SPACE 1805
#define SHARP_ZERO_SPACE 795
#define SHARP_GAP 600000
#define SHARP_RPT_SPACE 3000
#define SHARP_TOGGLE_MASK 0x3FF
//+=============================================================================
#if SEND_SHARP
void IRsend::sendSharpRaw (unsigned long data, int nbits)
{
enableIROut(38);
// Sending codes in bursts of 3 (normal, inverted, normal) makes transmission
// much more reliable. That's the exact behaviour of CD-S6470 remote control.
for (int n = 0; n < 3; n++) {
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(SHARP_BIT_MARK);
space(SHARP_ONE_SPACE);
} else {
mark(SHARP_BIT_MARK);
space(SHARP_ZERO_SPACE);
}
}
mark(SHARP_BIT_MARK);
space(SHARP_ZERO_SPACE);
delay(40);
data = data ^ SHARP_TOGGLE_MASK;
}
}
#endif
//+=============================================================================
// Sharp send compatible with data obtained through decodeSharp()
// ^^^^^^^^^^^^^ FUNCTION MISSING!
//
#if SEND_SHARP
void IRsend::sendSharp (unsigned int address, unsigned int command)
{
sendSharpRaw((address << 10) | (command << 2) | 2, SHARP_BITS);
}
#endif

95
ir_Sony.cpp Normal file
View File

@@ -0,0 +1,95 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// SSSS OOO N N Y Y
// S O O NN N Y Y
// SSS O O N N N Y
// S O O N NN Y
// SSSS OOO N N Y
//==============================================================================
#define SONY_BITS 12
#define SONY_HDR_MARK 2400
#define SONY_HDR_SPACE 600
#define SONY_ONE_MARK 1200
#define SONY_ZERO_MARK 600
#define SONY_RPT_LENGTH 45000
#define SONY_DOUBLE_SPACE_USECS 500 // usually ssee 713 - not using ticks as get number wrapround
//+=============================================================================
#if SEND_SONY
void IRsend::sendSony (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(40);
// Header
mark(SONY_HDR_MARK);
space(SONY_HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(SONY_ONE_MARK);
space(SONY_HDR_SPACE);
} else {
mark(SONY_ZERO_MARK);
space(SONY_HDR_SPACE);
}
}
// We will have ended with LED off
}
#endif
//+=============================================================================
#if DECODE_SONY
bool IRrecv::decodeSony (decode_results *results)
{
long data = 0;
int offset = 0; // Dont skip first space, check its size
if (irparams.rawlen < (2 * SONY_BITS) + 2) return false ;
// Some Sony's deliver repeats fast after first
// unfortunately can't spot difference from of repeat from two fast clicks
if (results->rawbuf[offset] < SONY_DOUBLE_SPACE_USECS) {
// Serial.print("IR Gap found: ");
results->bits = 0;
results->value = REPEAT;
# ifdef DECODE_SANYO
results->decode_type = SANYO;
# else
results->decode_type = UNKNOWN;
# endif
return true;
}
offset++;
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset++], SONY_HDR_MARK)) return false ;
while (offset + 1 < irparams.rawlen) {
if (!MATCH_SPACE(results->rawbuf[offset++], SONY_HDR_SPACE)) break ;
if (MATCH_MARK(results->rawbuf[offset], SONY_ONE_MARK)) data = (data << 1) | 1 ;
else if (MATCH_MARK(results->rawbuf[offset], SONY_ZERO_MARK)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < 12) {
results->bits = 0;
return false;
}
results->value = data;
results->decode_type = SONY;
return true;
}
#endif

179
ir_Template.cpp Normal file
View File

@@ -0,0 +1,179 @@
/*
Assuming the protocol we are adding is for the (imaginary) manufacturer: Shuzu
Our fantasy protocol is a standard protocol, so we can use this standard
template without too much work. Some protocols are quite unique and will require
considerably more work in this file! It is way beyond the scope of this text to
explain how to reverse engineer "unusual" IR protocols. But, unless you own an
oscilloscope, the starting point is probably to use the rawDump.ino sketch and
try to spot the pattern!
Before you start, make sure the IR library is working OK:
# Open up the Arduino IDE
# Load up the rawDump.ino example sketch
# Run it
Now we can start to add our new protocol...
1. Copy this file to : ir_Shuzu.cpp
2. Replace all occurrences of "Shuzu" with the name of your protocol.
3. Tweak the #defines to suit your protocol.
4. If you're lucky, tweaking the #defines will make the default send() function
work.
5. Again, if you're lucky, tweaking the #defines will have made the default
decode() function work.
You have written the code to support your new protocol!
Now you must do a few things to add it to the IRremote system:
1. Open IRremote.h and make the following changes:
REMEMEBER to change occurences of "SHUZU" with the name of your protocol
A. At the top, in the section "Supported Protocols", add:
#define DECODE_SHUZU 1
#define SEND_SHUZU 1
B. In the section "enumerated list of all supported formats", add:
SHUZU,
to the end of the list (notice there is a comma after the protocol name)
C. Further down in "Main class for receiving IR", add:
//......................................................................
#if DECODE_SHUZU
bool decodeShuzu (decode_results *results) ;
#endif
D. Further down in "Main class for sending IR", add:
//......................................................................
#if SEND_SHUZU
void sendShuzu (unsigned long data, int nbits) ;
#endif
E. Save your changes and close the file
2. Now open irRecv.cpp and make the following change:
A. In the function IRrecv::decode(), add:
#ifdef DECODE_NEC
DBG_PRINTLN("Attempting Shuzu decode");
if (decodeShuzu(results)) return true ;
#endif
B. Save your changes and close the file
You will probably want to add your new protocol to the example sketch
3. Open MyDocuments\Arduino\libraries\IRremote\examples\IRrecvDumpV2.ino
A. In the encoding() function, add:
case SHUZU: Serial.print("SHUZU"); break ;
Now open the Arduino IDE, load up the rawDump.ino sketch, and run it.
Hopefully it will compile and upload.
If it doesn't, you've done something wrong. Check your work.
If you can't get it to work - seek help from somewhere.
If you get this far, I will assume you have successfully added your new protocol
There is one last thing to do.
1. Delete this giant instructional comment.
2. Send a copy of your work to us so we can include it in the library and
others may benefit from your hard work and maybe even write a song about how
great you are for helping them! :)
Regards,
BlueChip
*/
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
//
//
// S H U Z U
//
//
//==============================================================================
#define BITS 32 // The number of bits in the command
#define HDR_MARK 1000 // The length of the Header:Mark
#define HDR_SPACE 2000 // The lenght of the Header:Space
#define BIT_MARK 3000 // The length of a Bit:Mark
#define ONE_SPACE 4000 // The length of a Bit:Space for 1's
#define ZERO_SPACE 5000 // The length of a Bit:Space for 0's
#define OTHER 1234 // Other things you may need to define
//+=============================================================================
//
#if SEND_SHUZU
void IRsend::sendShuzu (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark (HDR_MARK);
space(HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark (BIT_MARK);
space(ONE_SPACE);
} else {
mark (BIT_MARK);
space(ZERO_SPACE);
}
}
// Footer
mark(BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
//
#if DECODE_SHUZU
bool IRrecv::decodeShuzu (decode_results *results)
{
unsigned long data = 0; // Somewhere to build our code
int offset = 1; // Skip the Gap reading
// Check we have the right amount of data
if (irparams.rawlen != 1 + 2 + (2 * BITS) + 1) return false ;
// Check initial Mark+Space match
if (!MATCH_MARK (results->rawbuf[offset++], HDR_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], HDR_SPACE)) return false ;
// Read the bits in
for (int i = 0; i < SHUZU_BITS; i++) {
// Each bit looks like: MARK + SPACE_1 -> 1
// or : MARK + SPACE_0 -> 0
if (!MATCH_MARK(results->rawbuf[offset++], BIT_MARK)) return false ;
// IR data is big-endian, so we shuffle it in from the right:
if (MATCH_SPACE(results->rawbuf[offset], ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = BITS;
results->value = data;
results->decode_type = SHUZU;
return true;
}
#endif

91
ir_Whynter.cpp Normal file
View File

@@ -0,0 +1,91 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// W W H H Y Y N N TTTTT EEEEE RRRRR
// W W H H Y Y NN N T E R R
// W W W HHHHH Y N N N T EEE RRRR
// W W W H H Y N NN T E R R
// WWW H H Y N N T EEEEE R R
//==============================================================================
#define WHYNTER_BITS 32
#define WHYNTER_HDR_MARK 2850
#define WHYNTER_HDR_SPACE 2850
#define WHYNTER_BIT_MARK 750
#define WHYNTER_ONE_MARK 750
#define WHYNTER_ONE_SPACE 2150
#define WHYNTER_ZERO_MARK 750
#define WHYNTER_ZERO_SPACE 750
//+=============================================================================
#if SEND_WHYNTER
void IRsend::sendWhynter (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Start
mark(WHYNTER_ZERO_MARK);
space(WHYNTER_ZERO_SPACE);
// Header
mark(WHYNTER_HDR_MARK);
space(WHYNTER_HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(WHYNTER_ONE_MARK);
space(WHYNTER_ONE_SPACE);
} else {
mark(WHYNTER_ZERO_MARK);
space(WHYNTER_ZERO_SPACE);
}
}
// Footer
mark(WHYNTER_ZERO_MARK);
space(WHYNTER_ZERO_SPACE); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_WHYNTER
bool IRrecv::decodeWhynter (decode_results *results)
{
long data = 0;
int offset = 1; // skip initial space
// Check we have the right amount of data
if (irparams.rawlen < (2 * WHYNTER_BITS) + 6) return false ;
// Sequence begins with a bit mark and a zero space
if (!MATCH_MARK (results->rawbuf[offset++], WHYNTER_BIT_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], WHYNTER_ZERO_SPACE)) return false ;
// header mark and space
if (!MATCH_MARK (results->rawbuf[offset++], WHYNTER_HDR_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], WHYNTER_HDR_SPACE)) return false ;
// data bits
for (int i = 0; i < WHYNTER_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], WHYNTER_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset], WHYNTER_ONE_SPACE )) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], WHYNTER_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// trailing mark
if (!MATCH_MARK(results->rawbuf[offset], WHYNTER_BIT_MARK)) return false ;
// Success
results->bits = WHYNTER_BITS;
results->value = data;
results->decode_type = WHYNTER;
return true;
}
#endif

View File

@@ -7,7 +7,7 @@
"type": "git",
"url": "https://github.com/z3t0/Arduino-IRremote.git"
},
"version": "2.2.1",
"version": "2.3.3",
"frameworks": "arduino",
"platforms": "atmelavr",
"authors" :

View File

@@ -1,8 +1,9 @@
name=IRremote
version=3.0.0
author=shirriff, z3t0 <zetoslab@gmail.com>
maintainer=z3t0 <zetoslab@gmail.com>
version=2.2.3
author=shirriff
maintainer=shirriff
sentence=Send and receive infrared signals with multiple protocols
category=Communication
url=http://z3t0.github.io/Arduino-IRremote/
paragraph=Send and receive infrared signals with multiple protocols
category=Signal Input/Output
url=https://github.com/shirriff/Arduino-IRremote.git
architectures=*