mirror of
https://github.com/Theaninova/Brick-Monorail.git
synced 2025-12-11 04:06:14 +00:00
361 lines
13 KiB
OpenSCAD
361 lines
13 KiB
OpenSCAD
include <BOSL2/std.scad>;
|
|
include <BOSL2/beziers.scad>;
|
|
|
|
/* [Print Settings] */
|
|
// Mid-print stud inserts allowing the studs to be printed facing up seperately
|
|
StudInserts = true;
|
|
// Mid-print slot inserts eliminating the need for supports
|
|
AntiStudInserts = true;
|
|
// Part to generate
|
|
Type = "switch"; // [rail,switch,studs,antistuds]
|
|
|
|
/* [Model Settings] */
|
|
Length = 8; // [4:1:56]
|
|
Radius = 25; // [4:1:36]
|
|
// The angle the track takes
|
|
Angle = 0.0;
|
|
// Useful when working with Pythagorean Triples
|
|
AngleIsLength = true;
|
|
SwitchSupportCount = 3;
|
|
SwitchFrontLength = 4;
|
|
|
|
module __CustomizerLimit__() {}
|
|
|
|
$LDU=0.4;
|
|
|
|
$stud=12 * $LDU;
|
|
$studHeight=4 * $LDU;
|
|
|
|
$tile=20 * $LDU;
|
|
$plate=8 * $LDU;
|
|
$studBrim=$tile - $stud;
|
|
$studSupport=8 * $LDU;
|
|
|
|
$fillet=$LDU;
|
|
$edgeTolerance=$LDU / 2;
|
|
|
|
$len = 20;
|
|
|
|
$baseHeight = $tile;
|
|
$baseWidth = 4 * $tile;
|
|
|
|
$teeth = 5;
|
|
$teethTolerance = $LDU;
|
|
$teethRailWidth = 10 * $LDU;
|
|
$teethWidth = $tile / $teeth;
|
|
$teethDepth = 3 * $LDU;
|
|
|
|
module tooth() {
|
|
$height = $teethWidth - $teethTolerance;
|
|
$rail = $teethRailWidth / 2;
|
|
$topY = $height / 2;
|
|
$midY = $teethTolerance / 2;
|
|
$endX = $rail + $teethDepth;
|
|
|
|
translate([0, $teethWidth / 2, 0]) linear_extrude($plate) polygon(points=[
|
|
[$rail, $topY],
|
|
[$endX, $midY],
|
|
[$endX, -$midY],
|
|
[$rail, -$topY],
|
|
[-$rail, -$topY],
|
|
[-$endX, -$midY],
|
|
[-$endX, $midY],
|
|
[-$rail, $topY]
|
|
]);
|
|
}
|
|
|
|
module antiStudInsert(carve=true, depth=$studHeight * 2, supportHeight=$LDU * 4, supportWidth=$LDU * 4) {
|
|
difference() {
|
|
union() {
|
|
cube([$tile * 2, $tile, depth + supportHeight], anchor=FRONT+BOTTOM);
|
|
translate([0, $tile + supportWidth + (carve ? 0 : $LDU / 2), 0])
|
|
cube([
|
|
$tile * 2 + supportWidth + (carve ? 0 : $LDU),
|
|
supportWidth + $tile * 0.6 + (carve ? 0 : $LDU),
|
|
depth + supportHeight
|
|
], anchor=BACK+BOTTOM);
|
|
}
|
|
|
|
if (carve) {
|
|
mirror_copy([1, 0, 0])
|
|
translate([$tile / 2, $tile / 2, 0]) group() {
|
|
cube([$stud, $stud, depth], anchor=BOTTOM+CENTER);
|
|
mirror_copy([0, 1, 0])
|
|
mirror_copy([1, 0, 0])
|
|
translate([$LDU * 2, $LDU * 2, 0])
|
|
cube([$stud / 2, $stud / 2, depth], anchor=BOTTOM+FRONT+LEFT);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
module studInsert(carve=true, supportThickness = $LDU * 4) {
|
|
mirror_copy([0, 1, 0])
|
|
translate([0, $tile / 2, 0])
|
|
cyl(l=$studHeight + $LDU / 2, d=$stud + $LDU / 2, $fn=48, anchor=TOP, orient=LEFT);
|
|
cube([supportThickness, $tile + $stud, $stud], anchor=RIGHT);
|
|
translate([-supportThickness, 0, $stud / 2])
|
|
cube([
|
|
supportThickness + (carve ? 0 : $LDU),
|
|
$tile + $stud + $LDU + (carve ? 0 : $LDU),
|
|
$stud + $LDU * 1.5 + (carve ? 0 : $LDU)
|
|
], anchor=RIGHT+TOP);
|
|
}
|
|
|
|
module brickSlot(w=1, l=1, h=3) {
|
|
cube([$tile * w, $tile * l, $plate * h], anchor=TOP);
|
|
mirror_copy([1, 0, 0])
|
|
mirror_copy([0, 1, 0])
|
|
translate([$tile / 2, $tile / 2, 0])
|
|
cyl(d=$fillet, h=$plate * h, anchor=TOP, $fn=12);
|
|
cube([$stud, $stud, $studHeight * 2], anchor=BOTTOM);
|
|
}
|
|
|
|
module endCapStraight(includeRail=true) {
|
|
$width = $baseWidth - $plate * 2;
|
|
union() {
|
|
difference() {
|
|
union() {
|
|
cube([$width, $tile * 2, $tile], anchor=CENTER);
|
|
if (!StudInserts) {
|
|
mirror_copy([1, 0, 0]) translate([$width / 2, 0, 0]) studInsert();
|
|
}
|
|
|
|
// End Slot
|
|
translate([$tile + $LDU, -$tile, 0]) cube([6 * $LDU, $LDU, $tile], anchor=LEFT+BACK);
|
|
}
|
|
|
|
if (StudInserts) {
|
|
mirror_copy([1, 0, 0]) translate([$width / 2, 0, 0]) studInsert(carve=false);
|
|
}
|
|
|
|
mirror_copy([1, 0, 0]) translate([$tile, 0, $tile / 2 - $plate * 2]) cyl(d=$fillet, h=$tile, $fn=12, anchor=TOP);
|
|
translate([0, -$tile, $tile / 2 - $plate * 2]) cube([$tile * 2, $tile, $plate], anchor=FRONT+TOP);
|
|
translate([0, -$tile, $tile / 2 - $plate * 2]) antiStudInsert(carve=false);
|
|
|
|
// Fingernail slot
|
|
mirror_copy([1, 0, 0])
|
|
translate([$width / 2, 0, $tile / 2])
|
|
cube([$LDU * 3, $tile, $LDU * 3], anchor=CENTER)
|
|
|
|
translate([$plate, $tile / 2, $tile - $LDU]) cube([$LDU, $tile, $LDU]);
|
|
translate([$width + $plate - $LDU, $tile / 2, $tile - $LDU]) cube([$LDU, $tile, $LDU]);
|
|
|
|
// End Slots
|
|
translate([-$tile, -$tile, 0]) cube([8 * $LDU, $LDU * 2, $tile], anchor=RIGHT+FRONT);
|
|
translate([$tile + 7 * $LDU, -$tile, 0])
|
|
mirror_copy([1, 0, 0], cp=[-3 * $LDU, 0, 0])
|
|
cyl(d=$fillet, h=$tile, $fn=12);
|
|
translate([-$tile, -$tile + $LDU * 2])
|
|
mirror_copy([1, 0, 0], cp=[-4 * $LDU, 0, 0])
|
|
cyl(d=$fillet, h=$tile, $fn=12);
|
|
}
|
|
|
|
if (!AntiStudInserts) {
|
|
translate([0, -$tile, $tile / 2 - $plate * 2]) antiStudInsert();
|
|
}
|
|
|
|
if (includeRail) {
|
|
// Rail
|
|
translate([0, $teethTolerance / 2, $tile / 2]) cuboid([$teethRailWidth, $tile * 2 - $teethTolerance, $plate], anchor=BOTTOM);
|
|
translate([0, -$tile, $tile / 2]) group() {
|
|
for (i = [0:(2 * $teeth - 1)]) {
|
|
translate([0, i * $teethWidth, 0]) tooth();
|
|
}
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|
|
module monorailCurve(startCaps=true, endCaps=true, guiderail=true, widthAddRight=0, widthAddLeft=0) {
|
|
sa = 0;
|
|
ea = AngleIsLength ? asin(Angle / Radius) : Angle;
|
|
$n_teeth = round((PI * Radius * $tile) / (295 / abs(-sa - ea)));
|
|
angle = [180 - ea, 180 + sa];
|
|
points = arc($n_teeth, r=(Radius * $tile), angle=angle);
|
|
|
|
translate([Radius * $tile, 0, 0]) union() {
|
|
if (endCaps) {
|
|
translate(points[0]) rot(180 - ea) back($tile) endCapStraight(includeRail=false);
|
|
}
|
|
if (startCaps) {
|
|
translate(points[len(points) - 1]) rot(sa) back($tile) endCapStraight(includeRail=false);
|
|
}
|
|
difference() {
|
|
path_sweep(guiderail ? [
|
|
[-$teethRailWidth / 2, $tile / 2 + $plate],
|
|
[-$teethRailWidth / 2, $tile / 2],
|
|
[-(2 + widthAddLeft) * $tile, $tile / 2],
|
|
[-(2 + widthAddLeft) * $tile, -$tile / 2],
|
|
[(2 + widthAddRight) * $tile, -$tile / 2],
|
|
[(2 + widthAddRight) * $tile, $tile / 2],
|
|
[$teethRailWidth / 2, $tile / 2],
|
|
[$teethRailWidth / 2, $tile / 2 + $plate],
|
|
] : [
|
|
[-(2 + widthAddLeft) * $tile, $tile / 2],
|
|
[-(2 + widthAddLeft) * $tile, -$tile / 2],
|
|
[(2 + widthAddRight) * $tile, -$tile / 2],
|
|
[(2 + widthAddRight) * $tile, $tile / 2],
|
|
], points);
|
|
if (endCaps) {
|
|
translate(points[0]) rot(-ea) cube([$tile * 8, $tile * 4, $tile], anchor=CENTER);
|
|
translate(points[0]) rot(-ea) translate([0, -$teethWidth/2, 0]) cube([$tile * 6, $tile * 4, $tile], anchor=BOTTOM+FRONT);
|
|
}
|
|
if (startCaps) {
|
|
translate(points[len(points) - 1]) rot(sa) cube([$tile * 8, $tile * 4, $tile], anchor=CENTER);
|
|
translate(points[len(points) - 1]) rot(sa) translate([0, $teethWidth / 2, 0]) cube([$tile * 6, $tile * 4, $tile], anchor=BOTTOM+BACK);
|
|
}
|
|
}
|
|
if (guiderail) {
|
|
translate([0, 0, $tile / 2])
|
|
arc_copies($n_teeth + 1, r=(Radius * $tile), sa=angle[0], ea=angle[1] - (180 * ($teethWidth / (PI * Radius * $tile))))
|
|
tooth();
|
|
}
|
|
}
|
|
}
|
|
|
|
module monorailStraight() {
|
|
union() {
|
|
translate([0, $tile, 0]) endCapStraight();
|
|
translate([0, (Length - 1) * $tile, 0]) rotate(180) endCapStraight();
|
|
if (Length > 4) {
|
|
translate([0, $tile * 2, 0]) cube([4 * $tile, (Length - 4) * $tile, $tile], anchor=FRONT);
|
|
translate([0, $tile * 2, $tile / 2]) cube([$teethRailWidth, (Length - 4) * $tile, $plate], anchor=BOTTOM+FRONT);
|
|
translate([0, $tile * 2, $tile / 2]) group() {
|
|
for (i = [0:($teeth * (Length - 4) - 1)]) {
|
|
translate([0, i * $teethWidth, 0]) tooth();
|
|
}
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|
|
module guiderailChainLink() {
|
|
difference() {
|
|
tooth();
|
|
translate([0, $teethWidth / 2, 0]) cyl(d=$LDU * 4, h=$plate, anchor=BOTTOM, $fn=32);
|
|
}
|
|
translate([0, $teethWidth / 2 * 3, 0]) cyl(d=$LDU * 3, h=$plate, anchor=BOTTOM, $fn=32);
|
|
translate([0, $teethWidth / 2, 0]) cube([$teethRailWidth, $teethWidth, $plate], anchor=BOTTOM+FRONT);
|
|
}
|
|
|
|
module switchLeverSlot(travelDistance) {
|
|
leverHeight = $plate;
|
|
slotAngle = asin(leverHeight / (travelDistance * $tile));
|
|
translate([0, $tile / 2, $tile / 2 + $plate])
|
|
cube([$teethRailWidth / 2, travelDistance * $tile, $plate], anchor=TOP+FRONT);
|
|
}
|
|
|
|
module monorailSwitch() {
|
|
travelDistance = 2 + ($teethRailWidth / $tile);
|
|
strength = 4 * $LDU;
|
|
tolerance = $LDU;
|
|
|
|
midLength = ceil(cos(asin(1 - 3 / Radius)) * Radius);
|
|
|
|
difference() {
|
|
union() {
|
|
translate([0, $tile, 0]) endCapStraight();
|
|
translate([0, $tile * (Length - 1), 0]) rotate([0, 0, 180]) endCapStraight();
|
|
translate([0, $tile * SwitchFrontLength, 0]) cube([$tile * 3, $tile * midLength, $tile], anchor=FRONT+RIGHT);
|
|
translate([0, $tile * SwitchFrontLength, 0]) cube([$tile * 4, $tile * midLength, $tile], anchor=FRONT+CENTER);
|
|
difference() {
|
|
translate([0, $tile * SwitchFrontLength, 0]) monorailCurve(startCaps=false, widthAddRight=1);
|
|
translate([0, $tile * Length, 0]) cube([$tile * 4 + $plate * 2, $tile * 2, $tile], anchor=BACK);
|
|
}
|
|
|
|
// straight teeth
|
|
translate([-$tile * travelDistance, $tile * SwitchFrontLength, $tile / 2]) group() {
|
|
cube([$teethRailWidth, $tile * midLength, $plate], anchor=BOTTOM+FRONT);
|
|
for (i = [0:($teeth * midLength - 1)]) {
|
|
translate([0, i * $teethWidth, 0]) tooth();
|
|
}
|
|
}
|
|
|
|
translate([0, $tile * (midLength + SwitchFrontLength), $tile / 2]) group() {
|
|
segmentLength = Length - midLength - SwitchFrontLength - 2;
|
|
cube([$teethRailWidth, $tile * segmentLength, $plate], anchor=BOTTOM+FRONT);
|
|
cube([$tile * 4, $tile * segmentLength, $tile], anchor=TOP+FRONT);
|
|
for (i = [0:($teeth * segmentLength - 1)]) {
|
|
translate([0, i * $teethWidth, 0]) tooth();
|
|
}
|
|
}
|
|
}
|
|
translate([0, $tile * SwitchFrontLength, $tile / 2]) cube([$tile * 20, $teethTolerance, $plate], anchor=BOTTOM);
|
|
translate([0, $tile * (SwitchFrontLength + midLength), $tile / 2]) cube([$tile * 20, $teethTolerance, $plate], anchor=BOTTOM);
|
|
difference() {
|
|
translate([0, $tile * SwitchFrontLength, $tile / 2]) cube([$tile * 20, midLength * $tile, $LDU], anchor=BOTTOM+FRONT);
|
|
|
|
for (i = [0:SwitchSupportCount - 1]) {
|
|
y = SwitchFrontLength + 1 + ((midLength - 2) / (SwitchSupportCount - 1) * i);
|
|
wl = 2 * $tile + travelDistance + $teethRailWidth;
|
|
wr = (1 - cos(asin((y - SwitchFrontLength) / Radius))) * Radius * $tile + travelDistance + 2 * $tile + $teethRailWidth;
|
|
translate([-wl, $tile * y, 0]) cube([wl + wr, strength, $tile * 2], anchor=LEFT);
|
|
}
|
|
}
|
|
|
|
// Mechanism
|
|
curveAngleMax = asin((midLength + 0.5 + travelDistance) / Radius);
|
|
curveAngleMin = asin(midLength / Radius);
|
|
curveAngle = curveAngleMin + (curveAngleMax - curveAngleMin) / 2;
|
|
curveX = (1 - cos(curveAngleMin)) * Radius * $tile;
|
|
translate([0, $tile * (SwitchFrontLength + midLength), 0]) switchLeverSlot(travelDistance);
|
|
translate([curveX - $LDU, $tile * (SwitchFrontLength + midLength), 0]) rotate([0, 0, -curveAngle]) switchLeverSlot(travelDistance);
|
|
|
|
for (i = [0:SwitchSupportCount - 1]) {
|
|
y = SwitchFrontLength + 1 + ((midLength - 2) / (SwitchSupportCount - 1) * i);
|
|
wl = 2 * $tile + travelDistance + $teethRailWidth;
|
|
wr = (1 - cos(asin((y - SwitchFrontLength) / Radius))) * Radius * $tile + travelDistance + 2 * $tile + $teethRailWidth;
|
|
translate([-wl, $tile * y, 0]) group() {
|
|
cube([wl + wr, strength + $LDU * 2, $tile], anchor=LEFT);
|
|
rotate([45, 0, 0]) cube([wl + wr, strength * 2 + $LDU * 2, strength * 2 + $LDU * 2], anchor=LEFT);
|
|
};
|
|
}
|
|
|
|
translate([0, $tile * (SwitchFrontLength + midLength / 2), -$tile / 2])
|
|
cyl(d=$tile * (4 + travelDistance / 2) + $LDU * 2, h=$tile / 2, chamfer=$LDU * 4, $fn=64, anchor=BOTTOM);
|
|
}
|
|
|
|
if (SwitchFrontLength > 2) {
|
|
translate([0, $tile * 2, 0]) cube([$tile * 4, $tile * 2, $tile], anchor=FRONT);
|
|
translate([0, $tile * 2, $tile / 2])
|
|
cube([$teethRailWidth, (SwitchFrontLength - 2) * $tile - $teethWidth / 2, $plate], anchor=BOTTOM+FRONT);
|
|
translate([0, $tile * 2, $tile / 2]) group() {
|
|
for (i = [0:($teeth * (SwitchFrontLength - 2) - 1)]) {
|
|
translate([0, i * $teethWidth, 0]) tooth();
|
|
}
|
|
};
|
|
}
|
|
|
|
union() {
|
|
for (i = [0:SwitchSupportCount - 1]) {
|
|
y = SwitchFrontLength + 1 + ((midLength - 2) / (SwitchSupportCount - 1) * i);
|
|
wl = 2 * $tile + travelDistance + $teethRailWidth;
|
|
wr = (1 - cos(asin((y - SwitchFrontLength) / Radius))) * Radius * $tile + travelDistance;
|
|
translate([-wl + $LDU, $tile * y, 0]) group() {
|
|
cube([wl + wr, strength, $tile], anchor=LEFT);
|
|
rotate([45, 0, 0]) cube([wl + wr, strength * 2, strength * 2], anchor=LEFT);
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Type == "rail") {
|
|
if (Angle == 0)
|
|
monorailStraight();
|
|
else
|
|
monorailCurve();
|
|
} else if (Type == "studs") {
|
|
rotate([0, -90, 0]) studInsert();
|
|
} else if (Type == "antistuds") {
|
|
rotate([180, 0, 180]) antiStudInsert();
|
|
} else if (Type == "switch") {
|
|
//guiderailChainLink();
|
|
monorailSwitch();
|
|
}
|
|
|
|
|
|
// endCapStraight();
|
|
// translate([28.75, -232, -5.75]) rotate([0, 0, 90]) import("straight.stl");
|
|
//translate([28.75, -232, -5.75]) rotate([0, 0, 90]) import("4dbrix_curve.stl");
|