mirror of
https://github.com/Theaninova/Arduino-IRremote.git
synced 2025-12-12 17:36:15 +00:00
Most work already done by zenwheel, but the sendPanasonic command didn't work. Sending and decoding is confirmed to work with using both the JVC and Panasonic protocol. The library has also been updated to work with Arduino IDE 1.0.
869 lines
23 KiB
C++
869 lines
23 KiB
C++
/*
|
|
* IRremote
|
|
* Version 0.11 August, 2009
|
|
* Copyright 2009 Ken Shirriff
|
|
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
|
|
*
|
|
* Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
|
|
*
|
|
* Interrupt code based on NECIRrcv by Joe Knapp
|
|
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
|
|
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
|
|
*
|
|
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
|
*/
|
|
|
|
#include "IRremote.h"
|
|
#include "IRremoteInt.h"
|
|
|
|
// Provides ISR
|
|
#include <avr/interrupt.h>
|
|
|
|
volatile irparams_t irparams;
|
|
|
|
// These versions of MATCH, MATCH_MARK, and MATCH_SPACE are only for debugging.
|
|
// To use them, set DEBUG in IRremoteInt.h
|
|
// Normally macros are used for efficiency
|
|
#ifdef DEBUG
|
|
int MATCH(int measured, int desired) {
|
|
Serial.print("Testing: ");
|
|
Serial.print(TICKS_LOW(desired), DEC);
|
|
Serial.print(" <= ");
|
|
Serial.print(measured, DEC);
|
|
Serial.print(" <= ");
|
|
Serial.println(TICKS_HIGH(desired), DEC);
|
|
return measured >= TICKS_LOW(desired) && measured <= TICKS_HIGH(desired);
|
|
}
|
|
|
|
int MATCH_MARK(int measured_ticks, int desired_us) {
|
|
Serial.print("Testing mark ");
|
|
Serial.print(measured_ticks * USECPERTICK, DEC);
|
|
Serial.print(" vs ");
|
|
Serial.print(desired_us, DEC);
|
|
Serial.print(": ");
|
|
Serial.print(TICKS_LOW(desired_us + MARK_EXCESS), DEC);
|
|
Serial.print(" <= ");
|
|
Serial.print(measured_ticks, DEC);
|
|
Serial.print(" <= ");
|
|
Serial.println(TICKS_HIGH(desired_us + MARK_EXCESS), DEC);
|
|
return measured_ticks >= TICKS_LOW(desired_us + MARK_EXCESS) && measured_ticks <= TICKS_HIGH(desired_us + MARK_EXCESS);
|
|
}
|
|
|
|
int MATCH_SPACE(int measured_ticks, int desired_us) {
|
|
Serial.print("Testing space ");
|
|
Serial.print(measured_ticks * USECPERTICK, DEC);
|
|
Serial.print(" vs ");
|
|
Serial.print(desired_us, DEC);
|
|
Serial.print(": ");
|
|
Serial.print(TICKS_LOW(desired_us - MARK_EXCESS), DEC);
|
|
Serial.print(" <= ");
|
|
Serial.print(measured_ticks, DEC);
|
|
Serial.print(" <= ");
|
|
Serial.println(TICKS_HIGH(desired_us - MARK_EXCESS), DEC);
|
|
return measured_ticks >= TICKS_LOW(desired_us - MARK_EXCESS) && measured_ticks <= TICKS_HIGH(desired_us - MARK_EXCESS);
|
|
}
|
|
#endif
|
|
|
|
void IRsend::sendNEC(unsigned long data, int nbits)
|
|
{
|
|
enableIROut(38);
|
|
mark(NEC_HDR_MARK);
|
|
space(NEC_HDR_SPACE);
|
|
for (int i = 0; i < nbits; i++) {
|
|
if (data & TOPBIT) {
|
|
mark(NEC_BIT_MARK);
|
|
space(NEC_ONE_SPACE);
|
|
}
|
|
else {
|
|
mark(NEC_BIT_MARK);
|
|
space(NEC_ZERO_SPACE);
|
|
}
|
|
data <<= 1;
|
|
}
|
|
mark(NEC_BIT_MARK);
|
|
space(0);
|
|
}
|
|
|
|
void IRsend::sendSony(unsigned long data, int nbits) {
|
|
enableIROut(40);
|
|
mark(SONY_HDR_MARK);
|
|
space(SONY_HDR_SPACE);
|
|
data = data << (32 - nbits);
|
|
for (int i = 0; i < nbits; i++) {
|
|
if (data & TOPBIT) {
|
|
mark(SONY_ONE_MARK);
|
|
space(SONY_HDR_SPACE);
|
|
}
|
|
else {
|
|
mark(SONY_ZERO_MARK);
|
|
space(SONY_HDR_SPACE);
|
|
}
|
|
data <<= 1;
|
|
}
|
|
}
|
|
|
|
void IRsend::sendRaw(unsigned int buf[], int len, int hz)
|
|
{
|
|
enableIROut(hz);
|
|
for (int i = 0; i < len; i++) {
|
|
if (i & 1) {
|
|
space(buf[i]);
|
|
}
|
|
else {
|
|
mark(buf[i]);
|
|
}
|
|
}
|
|
space(0); // Just to be sure
|
|
}
|
|
|
|
// Note: first bit must be a one (start bit)
|
|
void IRsend::sendRC5(unsigned long data, int nbits)
|
|
{
|
|
enableIROut(36);
|
|
data = data << (32 - nbits);
|
|
mark(RC5_T1); // First start bit
|
|
space(RC5_T1); // Second start bit
|
|
mark(RC5_T1); // Second start bit
|
|
for (int i = 0; i < nbits; i++) {
|
|
if (data & TOPBIT) {
|
|
space(RC5_T1); // 1 is space, then mark
|
|
mark(RC5_T1);
|
|
}
|
|
else {
|
|
mark(RC5_T1);
|
|
space(RC5_T1);
|
|
}
|
|
data <<= 1;
|
|
}
|
|
space(0); // Turn off at end
|
|
}
|
|
|
|
// Caller needs to take care of flipping the toggle bit
|
|
void IRsend::sendRC6(unsigned long data, int nbits)
|
|
{
|
|
enableIROut(36);
|
|
data = data << (32 - nbits);
|
|
mark(RC6_HDR_MARK);
|
|
space(RC6_HDR_SPACE);
|
|
mark(RC6_T1); // start bit
|
|
space(RC6_T1);
|
|
int t;
|
|
for (int i = 0; i < nbits; i++) {
|
|
if (i == 3) {
|
|
// double-wide trailer bit
|
|
t = 2 * RC6_T1;
|
|
}
|
|
else {
|
|
t = RC6_T1;
|
|
}
|
|
if (data & TOPBIT) {
|
|
mark(t);
|
|
space(t);
|
|
}
|
|
else {
|
|
space(t);
|
|
mark(t);
|
|
}
|
|
|
|
data <<= 1;
|
|
}
|
|
space(0); // Turn off at end
|
|
}
|
|
void IRsend::sendPanasonic(unsigned int address, unsigned long data) {
|
|
enableIROut(38);
|
|
mark(PANASONIC_HDR_MARK);
|
|
space(PANASONIC_HDR_SPACE);
|
|
|
|
for(int i=0;i<16;i++)
|
|
{
|
|
mark(PANASONIC_BIT_MARK);
|
|
if (address & 0x8000) {
|
|
space(PANASONIC_ONE_SPACE);
|
|
} else {
|
|
space(PANASONIC_ZERO_SPACE);
|
|
}
|
|
address <<= 1;
|
|
}
|
|
for (int i=0; i < 32; i++) {
|
|
mark(PANASONIC_BIT_MARK);
|
|
if (data & TOPBIT) {
|
|
space(PANASONIC_ONE_SPACE);
|
|
} else {
|
|
space(PANASONIC_ZERO_SPACE);
|
|
}
|
|
data <<= 1;
|
|
}
|
|
mark(PANASONIC_BIT_MARK);
|
|
space(0);
|
|
}
|
|
void IRsend::sendJVC(unsigned long data, int nbits, int repeat)
|
|
{
|
|
enableIROut(38);
|
|
data = data << (32 - nbits);
|
|
if (!repeat){
|
|
mark(JVC_HDR_MARK);
|
|
space(JVC_HDR_SPACE);
|
|
}
|
|
for (int i = 0; i < nbits; i++) {
|
|
if (data & TOPBIT) {
|
|
mark(JVC_BIT_MARK);
|
|
space(JVC_ONE_SPACE);
|
|
}
|
|
else {
|
|
mark(JVC_BIT_MARK);
|
|
space(JVC_ZERO_SPACE);
|
|
}
|
|
data <<= 1;
|
|
}
|
|
mark(JVC_BIT_MARK);
|
|
space(0);
|
|
}
|
|
void IRsend::mark(int time) {
|
|
// Sends an IR mark for the specified number of microseconds.
|
|
// The mark output is modulated at the PWM frequency.
|
|
TIMER_ENABLE_PWM; // Enable pin 3 PWM output
|
|
delayMicroseconds(time);
|
|
}
|
|
|
|
/* Leave pin off for time (given in microseconds) */
|
|
void IRsend::space(int time) {
|
|
// Sends an IR space for the specified number of microseconds.
|
|
// A space is no output, so the PWM output is disabled.
|
|
TIMER_DISABLE_PWM; // Disable pin 3 PWM output
|
|
delayMicroseconds(time);
|
|
}
|
|
|
|
void IRsend::enableIROut(int khz) {
|
|
// Enables IR output. The khz value controls the modulation frequency in kilohertz.
|
|
// The IR output will be on pin 3 (OC2B).
|
|
// This routine is designed for 36-40KHz; if you use it for other values, it's up to you
|
|
// to make sure it gives reasonable results. (Watch out for overflow / underflow / rounding.)
|
|
// TIMER2 is used in phase-correct PWM mode, with OCR2A controlling the frequency and OCR2B
|
|
// controlling the duty cycle.
|
|
// There is no prescaling, so the output frequency is 16MHz / (2 * OCR2A)
|
|
// To turn the output on and off, we leave the PWM running, but connect and disconnect the output pin.
|
|
// A few hours staring at the ATmega documentation and this will all make sense.
|
|
// See my Secrets of Arduino PWM at http://arcfn.com/2009/07/secrets-of-arduino-pwm.html for details.
|
|
|
|
|
|
// Disable the Timer2 Interrupt (which is used for receiving IR)
|
|
TIMER_DISABLE_INTR; //Timer2 Overflow Interrupt
|
|
|
|
pinMode(TIMER_PWM_PIN, OUTPUT);
|
|
digitalWrite(TIMER_PWM_PIN, LOW); // When not sending PWM, we want it low
|
|
|
|
// COM2A = 00: disconnect OC2A
|
|
// COM2B = 00: disconnect OC2B; to send signal set to 10: OC2B non-inverted
|
|
// WGM2 = 101: phase-correct PWM with OCRA as top
|
|
// CS2 = 000: no prescaling
|
|
// The top value for the timer. The modulation frequency will be SYSCLOCK / 2 / OCR2A.
|
|
TIMER_CONFIG_KHZ(khz);
|
|
}
|
|
|
|
IRrecv::IRrecv(int recvpin)
|
|
{
|
|
irparams.recvpin = recvpin;
|
|
irparams.blinkflag = 0;
|
|
}
|
|
|
|
// initialization
|
|
void IRrecv::enableIRIn() {
|
|
cli();
|
|
// setup pulse clock timer interrupt
|
|
//Prescale /8 (16M/8 = 0.5 microseconds per tick)
|
|
// Therefore, the timer interval can range from 0.5 to 128 microseconds
|
|
// depending on the reset value (255 to 0)
|
|
TIMER_CONFIG_NORMAL();
|
|
|
|
//Timer2 Overflow Interrupt Enable
|
|
TIMER_ENABLE_INTR;
|
|
|
|
TIMER_RESET;
|
|
|
|
sei(); // enable interrupts
|
|
|
|
// initialize state machine variables
|
|
irparams.rcvstate = STATE_IDLE;
|
|
irparams.rawlen = 0;
|
|
|
|
// set pin modes
|
|
pinMode(irparams.recvpin, INPUT);
|
|
}
|
|
|
|
// enable/disable blinking of pin 13 on IR processing
|
|
void IRrecv::blink13(int blinkflag)
|
|
{
|
|
irparams.blinkflag = blinkflag;
|
|
if (blinkflag)
|
|
pinMode(BLINKLED, OUTPUT);
|
|
}
|
|
|
|
// TIMER2 interrupt code to collect raw data.
|
|
// Widths of alternating SPACE, MARK are recorded in rawbuf.
|
|
// Recorded in ticks of 50 microseconds.
|
|
// rawlen counts the number of entries recorded so far.
|
|
// First entry is the SPACE between transmissions.
|
|
// As soon as a SPACE gets long, ready is set, state switches to IDLE, timing of SPACE continues.
|
|
// As soon as first MARK arrives, gap width is recorded, ready is cleared, and new logging starts
|
|
ISR(TIMER_INTR_NAME)
|
|
{
|
|
TIMER_RESET;
|
|
|
|
uint8_t irdata = (uint8_t)digitalRead(irparams.recvpin);
|
|
|
|
irparams.timer++; // One more 50us tick
|
|
if (irparams.rawlen >= RAWBUF) {
|
|
// Buffer overflow
|
|
irparams.rcvstate = STATE_STOP;
|
|
}
|
|
switch(irparams.rcvstate) {
|
|
case STATE_IDLE: // In the middle of a gap
|
|
if (irdata == MARK) {
|
|
if (irparams.timer < GAP_TICKS) {
|
|
// Not big enough to be a gap.
|
|
irparams.timer = 0;
|
|
}
|
|
else {
|
|
// gap just ended, record duration and start recording transmission
|
|
irparams.rawlen = 0;
|
|
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
|
|
irparams.timer = 0;
|
|
irparams.rcvstate = STATE_MARK;
|
|
}
|
|
}
|
|
break;
|
|
case STATE_MARK: // timing MARK
|
|
if (irdata == SPACE) { // MARK ended, record time
|
|
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
|
|
irparams.timer = 0;
|
|
irparams.rcvstate = STATE_SPACE;
|
|
}
|
|
break;
|
|
case STATE_SPACE: // timing SPACE
|
|
if (irdata == MARK) { // SPACE just ended, record it
|
|
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
|
|
irparams.timer = 0;
|
|
irparams.rcvstate = STATE_MARK;
|
|
}
|
|
else { // SPACE
|
|
if (irparams.timer > GAP_TICKS) {
|
|
// big SPACE, indicates gap between codes
|
|
// Mark current code as ready for processing
|
|
// Switch to STOP
|
|
// Don't reset timer; keep counting space width
|
|
irparams.rcvstate = STATE_STOP;
|
|
}
|
|
}
|
|
break;
|
|
case STATE_STOP: // waiting, measuring gap
|
|
if (irdata == MARK) { // reset gap timer
|
|
irparams.timer = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (irparams.blinkflag) {
|
|
if (irdata == MARK) {
|
|
BLINKLED_ON(); // turn pin 13 LED on
|
|
}
|
|
else {
|
|
BLINKLED_OFF(); // turn pin 13 LED off
|
|
}
|
|
}
|
|
}
|
|
|
|
void IRrecv::resume() {
|
|
irparams.rcvstate = STATE_IDLE;
|
|
irparams.rawlen = 0;
|
|
}
|
|
|
|
|
|
|
|
// Decodes the received IR message
|
|
// Returns 0 if no data ready, 1 if data ready.
|
|
// Results of decoding are stored in results
|
|
int IRrecv::decode(decode_results *results) {
|
|
results->rawbuf = irparams.rawbuf;
|
|
results->rawlen = irparams.rawlen;
|
|
if (irparams.rcvstate != STATE_STOP) {
|
|
return ERR;
|
|
}
|
|
#ifdef DEBUG
|
|
Serial.println("Attempting NEC decode");
|
|
#endif
|
|
if (decodeNEC(results)) {
|
|
return DECODED;
|
|
}
|
|
#ifdef DEBUG
|
|
Serial.println("Attempting Sony decode");
|
|
#endif
|
|
if (decodeSony(results)) {
|
|
return DECODED;
|
|
}
|
|
#ifdef DEBUG
|
|
Serial.println("Attempting RC5 decode");
|
|
#endif
|
|
if (decodeRC5(results)) {
|
|
return DECODED;
|
|
}
|
|
#ifdef DEBUG
|
|
Serial.println("Attempting RC6 decode");
|
|
#endif
|
|
if (decodeRC6(results)) {
|
|
return DECODED;
|
|
}
|
|
#ifdef DEBUG
|
|
Serial.println("Attempting Panasonic decode");
|
|
#endif
|
|
if (decodePanasonic(results)) {
|
|
return DECODED;
|
|
}
|
|
#ifdef DEBUG
|
|
Serial.println("Attempting JVC decode");
|
|
#endif
|
|
if (decodeJVC(results)) {
|
|
return DECODED;
|
|
}
|
|
// decodeHash returns a hash on any input.
|
|
// Thus, it needs to be last in the list.
|
|
// If you add any decodes, add them before this.
|
|
if (decodeHash(results)) {
|
|
return DECODED;
|
|
}
|
|
// Throw away and start over
|
|
resume();
|
|
return ERR;
|
|
}
|
|
|
|
long IRrecv::decodeNEC(decode_results *results) {
|
|
long data = 0;
|
|
int offset = 1; // Skip first space
|
|
// Initial mark
|
|
if (!MATCH_MARK(results->rawbuf[offset], NEC_HDR_MARK)) {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
// Check for repeat
|
|
if (irparams.rawlen == 4 &&
|
|
MATCH_SPACE(results->rawbuf[offset], NEC_RPT_SPACE) &&
|
|
MATCH_MARK(results->rawbuf[offset+1], NEC_BIT_MARK)) {
|
|
results->bits = 0;
|
|
results->value = REPEAT;
|
|
results->decode_type = NEC;
|
|
return DECODED;
|
|
}
|
|
if (irparams.rawlen < 2 * NEC_BITS + 4) {
|
|
return ERR;
|
|
}
|
|
// Initial space
|
|
if (!MATCH_SPACE(results->rawbuf[offset], NEC_HDR_SPACE)) {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
for (int i = 0; i < NEC_BITS; i++) {
|
|
if (!MATCH_MARK(results->rawbuf[offset], NEC_BIT_MARK)) {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
if (MATCH_SPACE(results->rawbuf[offset], NEC_ONE_SPACE)) {
|
|
data = (data << 1) | 1;
|
|
}
|
|
else if (MATCH_SPACE(results->rawbuf[offset], NEC_ZERO_SPACE)) {
|
|
data <<= 1;
|
|
}
|
|
else {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
}
|
|
// Success
|
|
results->bits = NEC_BITS;
|
|
results->value = data;
|
|
results->decode_type = NEC;
|
|
return DECODED;
|
|
}
|
|
|
|
long IRrecv::decodeSony(decode_results *results) {
|
|
long data = 0;
|
|
if (irparams.rawlen < 2 * SONY_BITS + 2) {
|
|
return ERR;
|
|
}
|
|
int offset = 1; // Skip first space
|
|
// Initial mark
|
|
if (!MATCH_MARK(results->rawbuf[offset], SONY_HDR_MARK)) {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
|
|
while (offset + 1 < irparams.rawlen) {
|
|
if (!MATCH_SPACE(results->rawbuf[offset], SONY_HDR_SPACE)) {
|
|
break;
|
|
}
|
|
offset++;
|
|
if (MATCH_MARK(results->rawbuf[offset], SONY_ONE_MARK)) {
|
|
data = (data << 1) | 1;
|
|
}
|
|
else if (MATCH_MARK(results->rawbuf[offset], SONY_ZERO_MARK)) {
|
|
data <<= 1;
|
|
}
|
|
else {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
}
|
|
|
|
// Success
|
|
results->bits = (offset - 1) / 2;
|
|
if (results->bits < 12) {
|
|
results->bits = 0;
|
|
return ERR;
|
|
}
|
|
results->value = data;
|
|
results->decode_type = SONY;
|
|
return DECODED;
|
|
}
|
|
|
|
// Gets one undecoded level at a time from the raw buffer.
|
|
// The RC5/6 decoding is easier if the data is broken into time intervals.
|
|
// E.g. if the buffer has MARK for 2 time intervals and SPACE for 1,
|
|
// successive calls to getRClevel will return MARK, MARK, SPACE.
|
|
// offset and used are updated to keep track of the current position.
|
|
// t1 is the time interval for a single bit in microseconds.
|
|
// Returns -1 for error (measured time interval is not a multiple of t1).
|
|
int IRrecv::getRClevel(decode_results *results, int *offset, int *used, int t1) {
|
|
if (*offset >= results->rawlen) {
|
|
// After end of recorded buffer, assume SPACE.
|
|
return SPACE;
|
|
}
|
|
int width = results->rawbuf[*offset];
|
|
int val = ((*offset) % 2) ? MARK : SPACE;
|
|
int correction = (val == MARK) ? MARK_EXCESS : - MARK_EXCESS;
|
|
|
|
int avail;
|
|
if (MATCH(width, t1 + correction)) {
|
|
avail = 1;
|
|
}
|
|
else if (MATCH(width, 2*t1 + correction)) {
|
|
avail = 2;
|
|
}
|
|
else if (MATCH(width, 3*t1 + correction)) {
|
|
avail = 3;
|
|
}
|
|
else {
|
|
return -1;
|
|
}
|
|
|
|
(*used)++;
|
|
if (*used >= avail) {
|
|
*used = 0;
|
|
(*offset)++;
|
|
}
|
|
#ifdef DEBUG
|
|
if (val == MARK) {
|
|
Serial.println("MARK");
|
|
}
|
|
else {
|
|
Serial.println("SPACE");
|
|
}
|
|
#endif
|
|
return val;
|
|
}
|
|
|
|
long IRrecv::decodeRC5(decode_results *results) {
|
|
if (irparams.rawlen < MIN_RC5_SAMPLES + 2) {
|
|
return ERR;
|
|
}
|
|
int offset = 1; // Skip gap space
|
|
long data = 0;
|
|
int used = 0;
|
|
// Get start bits
|
|
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return ERR;
|
|
if (getRClevel(results, &offset, &used, RC5_T1) != SPACE) return ERR;
|
|
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return ERR;
|
|
int nbits;
|
|
for (nbits = 0; offset < irparams.rawlen; nbits++) {
|
|
int levelA = getRClevel(results, &offset, &used, RC5_T1);
|
|
int levelB = getRClevel(results, &offset, &used, RC5_T1);
|
|
if (levelA == SPACE && levelB == MARK) {
|
|
// 1 bit
|
|
data = (data << 1) | 1;
|
|
}
|
|
else if (levelA == MARK && levelB == SPACE) {
|
|
// zero bit
|
|
data <<= 1;
|
|
}
|
|
else {
|
|
return ERR;
|
|
}
|
|
}
|
|
|
|
// Success
|
|
results->bits = nbits;
|
|
results->value = data;
|
|
results->decode_type = RC5;
|
|
return DECODED;
|
|
}
|
|
|
|
long IRrecv::decodeRC6(decode_results *results) {
|
|
if (results->rawlen < MIN_RC6_SAMPLES) {
|
|
return ERR;
|
|
}
|
|
int offset = 1; // Skip first space
|
|
// Initial mark
|
|
if (!MATCH_MARK(results->rawbuf[offset], RC6_HDR_MARK)) {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
if (!MATCH_SPACE(results->rawbuf[offset], RC6_HDR_SPACE)) {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
long data = 0;
|
|
int used = 0;
|
|
// Get start bit (1)
|
|
if (getRClevel(results, &offset, &used, RC6_T1) != MARK) return ERR;
|
|
if (getRClevel(results, &offset, &used, RC6_T1) != SPACE) return ERR;
|
|
int nbits;
|
|
for (nbits = 0; offset < results->rawlen; nbits++) {
|
|
int levelA, levelB; // Next two levels
|
|
levelA = getRClevel(results, &offset, &used, RC6_T1);
|
|
if (nbits == 3) {
|
|
// T bit is double wide; make sure second half matches
|
|
if (levelA != getRClevel(results, &offset, &used, RC6_T1)) return ERR;
|
|
}
|
|
levelB = getRClevel(results, &offset, &used, RC6_T1);
|
|
if (nbits == 3) {
|
|
// T bit is double wide; make sure second half matches
|
|
if (levelB != getRClevel(results, &offset, &used, RC6_T1)) return ERR;
|
|
}
|
|
if (levelA == MARK && levelB == SPACE) { // reversed compared to RC5
|
|
// 1 bit
|
|
data = (data << 1) | 1;
|
|
}
|
|
else if (levelA == SPACE && levelB == MARK) {
|
|
// zero bit
|
|
data <<= 1;
|
|
}
|
|
else {
|
|
return ERR; // Error
|
|
}
|
|
}
|
|
// Success
|
|
results->bits = nbits;
|
|
results->value = data;
|
|
results->decode_type = RC6;
|
|
return DECODED;
|
|
}
|
|
long IRrecv::decodePanasonic(decode_results *results) {
|
|
unsigned long long data = 0;
|
|
int offset = 1;
|
|
|
|
if (!MATCH_MARK(results->rawbuf[offset], PANASONIC_HDR_MARK)) {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
if (!MATCH_MARK(results->rawbuf[offset], PANASONIC_HDR_SPACE)) {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
|
|
// decode address
|
|
for (int i = 0; i < PANASONIC_BITS; i++) {
|
|
if (!MATCH_MARK(results->rawbuf[offset++], PANASONIC_BIT_MARK)) {
|
|
return ERR;
|
|
}
|
|
if (MATCH_SPACE(results->rawbuf[offset],PANASONIC_ONE_SPACE)) {
|
|
data = (data << 1) | 1;
|
|
} else if (MATCH_SPACE(results->rawbuf[offset],PANASONIC_ZERO_SPACE)) {
|
|
data <<= 1;
|
|
} else {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
}
|
|
results->value = (unsigned long)data;
|
|
results->panasonicAddress = (unsigned int)(data >> 32);
|
|
results->decode_type = PANASONIC;
|
|
results->bits = PANASONIC_BITS;
|
|
return DECODED;
|
|
}
|
|
long IRrecv::decodeJVC(decode_results *results) {
|
|
long data = 0;
|
|
int offset = 1; // Skip first space
|
|
// Check for repeat
|
|
if (irparams.rawlen - 1 == 33 &&
|
|
MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK) &&
|
|
MATCH_MARK(results->rawbuf[irparams.rawlen-1], JVC_BIT_MARK)) {
|
|
results->bits = 0;
|
|
results->value = REPEAT;
|
|
results->decode_type = JVC;
|
|
return DECODED;
|
|
}
|
|
// Initial mark
|
|
if (!MATCH_MARK(results->rawbuf[offset], JVC_HDR_MARK)) {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
if (irparams.rawlen < 2 * JVC_BITS + 1 ) {
|
|
return ERR;
|
|
}
|
|
// Initial space
|
|
if (!MATCH_SPACE(results->rawbuf[offset], JVC_HDR_SPACE)) {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
for (int i = 0; i < JVC_BITS; i++) {
|
|
if (!MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK)) {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
if (MATCH_SPACE(results->rawbuf[offset], JVC_ONE_SPACE)) {
|
|
data = (data << 1) | 1;
|
|
}
|
|
else if (MATCH_SPACE(results->rawbuf[offset], JVC_ZERO_SPACE)) {
|
|
data <<= 1;
|
|
}
|
|
else {
|
|
return ERR;
|
|
}
|
|
offset++;
|
|
}
|
|
//Stop bit
|
|
if (!MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK)){
|
|
return ERR;
|
|
}
|
|
// Success
|
|
results->bits = JVC_BITS;
|
|
results->value = data;
|
|
results->decode_type = JVC;
|
|
return DECODED;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------
|
|
* hashdecode - decode an arbitrary IR code.
|
|
* Instead of decoding using a standard encoding scheme
|
|
* (e.g. Sony, NEC, RC5), the code is hashed to a 32-bit value.
|
|
*
|
|
* The algorithm: look at the sequence of MARK signals, and see if each one
|
|
* is shorter (0), the same length (1), or longer (2) than the previous.
|
|
* Do the same with the SPACE signals. Hszh the resulting sequence of 0's,
|
|
* 1's, and 2's to a 32-bit value. This will give a unique value for each
|
|
* different code (probably), for most code systems.
|
|
*
|
|
* http://arcfn.com/2010/01/using-arbitrary-remotes-with-arduino.html
|
|
*/
|
|
|
|
// Compare two tick values, returning 0 if newval is shorter,
|
|
// 1 if newval is equal, and 2 if newval is longer
|
|
// Use a tolerance of 20%
|
|
int IRrecv::compare(unsigned int oldval, unsigned int newval) {
|
|
if (newval < oldval * .8) {
|
|
return 0;
|
|
}
|
|
else if (oldval < newval * .8) {
|
|
return 2;
|
|
}
|
|
else {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// Use FNV hash algorithm: http://isthe.com/chongo/tech/comp/fnv/#FNV-param
|
|
#define FNV_PRIME_32 16777619
|
|
#define FNV_BASIS_32 2166136261
|
|
|
|
/* Converts the raw code values into a 32-bit hash code.
|
|
* Hopefully this code is unique for each button.
|
|
* This isn't a "real" decoding, just an arbitrary value.
|
|
*/
|
|
long IRrecv::decodeHash(decode_results *results) {
|
|
// Require at least 6 samples to prevent triggering on noise
|
|
if (results->rawlen < 6) {
|
|
return ERR;
|
|
}
|
|
long hash = FNV_BASIS_32;
|
|
for (int i = 1; i+2 < results->rawlen; i++) {
|
|
int value = compare(results->rawbuf[i], results->rawbuf[i+2]);
|
|
// Add value into the hash
|
|
hash = (hash * FNV_PRIME_32) ^ value;
|
|
}
|
|
results->value = hash;
|
|
results->bits = 32;
|
|
results->decode_type = UNKNOWN;
|
|
return DECODED;
|
|
}
|
|
|
|
/* Sharp and DISH support by Todd Treece ( http://unionbridge.org/design/ircommand )
|
|
|
|
The Dish send function needs to be repeated 4 times, and the Sharp function
|
|
has the necessary repeat built in because of the need to invert the signal.
|
|
|
|
Sharp protocol documentation:
|
|
http://www.sbprojects.com/knowledge/ir/sharp.htm
|
|
|
|
Here are the LIRC files that I found that seem to match the remote codes
|
|
from the oscilloscope:
|
|
|
|
Sharp LCD TV:
|
|
http://lirc.sourceforge.net/remotes/sharp/GA538WJSA
|
|
|
|
DISH NETWORK (echostar 301):
|
|
http://lirc.sourceforge.net/remotes/echostar/301_501_3100_5100_58xx_59xx
|
|
|
|
For the DISH codes, only send the last for characters of the hex.
|
|
i.e. use 0x1C10 instead of 0x0000000000001C10 which is listed in the
|
|
linked LIRC file.
|
|
*/
|
|
|
|
void IRsend::sendSharp(unsigned long data, int nbits) {
|
|
unsigned long invertdata = data ^ SHARP_TOGGLE_MASK;
|
|
enableIROut(38);
|
|
for (int i = 0; i < nbits; i++) {
|
|
if (data & 0x4000) {
|
|
mark(SHARP_BIT_MARK);
|
|
space(SHARP_ONE_SPACE);
|
|
}
|
|
else {
|
|
mark(SHARP_BIT_MARK);
|
|
space(SHARP_ZERO_SPACE);
|
|
}
|
|
data <<= 1;
|
|
}
|
|
|
|
mark(SHARP_BIT_MARK);
|
|
space(SHARP_ZERO_SPACE);
|
|
delay(46);
|
|
for (int i = 0; i < nbits; i++) {
|
|
if (invertdata & 0x4000) {
|
|
mark(SHARP_BIT_MARK);
|
|
space(SHARP_ONE_SPACE);
|
|
}
|
|
else {
|
|
mark(SHARP_BIT_MARK);
|
|
space(SHARP_ZERO_SPACE);
|
|
}
|
|
invertdata <<= 1;
|
|
}
|
|
mark(SHARP_BIT_MARK);
|
|
space(SHARP_ZERO_SPACE);
|
|
delay(46);
|
|
}
|
|
|
|
void IRsend::sendDISH(unsigned long data, int nbits)
|
|
{
|
|
enableIROut(56);
|
|
mark(DISH_HDR_MARK);
|
|
space(DISH_HDR_SPACE);
|
|
for (int i = 0; i < nbits; i++) {
|
|
if (data & DISH_TOP_BIT) {
|
|
mark(DISH_BIT_MARK);
|
|
space(DISH_ONE_SPACE);
|
|
}
|
|
else {
|
|
mark(DISH_BIT_MARK);
|
|
space(DISH_ZERO_SPACE);
|
|
}
|
|
data <<= 1;
|
|
}
|
|
}
|