Files
Arduino-IRremote/IRremote.cpp
Ken Shirriff 31d80abc3f Fix CRLF issues.
Many problems happen with git due to some machines liking CRLF at the
end of lines, and others linking CR.  To try to straighten this out,
I'm using Unix-style LF (\n) as the line endings.  To make sure your
repository remains consistent, try:

$ git config --global core.autocrlf input

For details, see:
http://help.github.com/dealing-with-lineendings/
2010-05-15 15:21:48 -07:00

727 lines
19 KiB
C++

/*
* IRremote
* Version 0.11 August, 2009
* Copyright 2009 Ken Shirriff
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
*
* Interrupt code based on NECIRrcv by Joe Knapp
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
*/
#include "IRremote.h"
#include "IRremoteInt.h"
// Provides ISR
#include <avr/interrupt.h>
volatile irparams_t irparams;
// These versions of MATCH, MATCH_MARK, and MATCH_SPACE are only for debugging.
// To use them, set DEBUG in IRremoteInt.h
// Normally macros are used for efficiency
#ifdef DEBUG
int MATCH(int measured, int desired) {
Serial.print("Testing: ");
Serial.print(TICKS_LOW(desired), DEC);
Serial.print(" <= ");
Serial.print(measured, DEC);
Serial.print(" <= ");
Serial.println(TICKS_HIGH(desired), DEC);
return measured >= TICKS_LOW(desired) && measured <= TICKS_HIGH(desired);
}
int MATCH_MARK(int measured_ticks, int desired_us) {
Serial.print("Testing mark ");
Serial.print(measured_ticks * USECPERTICK, DEC);
Serial.print(" vs ");
Serial.print(desired_us, DEC);
Serial.print(": ");
Serial.print(TICKS_LOW(desired_us + MARK_EXCESS), DEC);
Serial.print(" <= ");
Serial.print(measured_ticks, DEC);
Serial.print(" <= ");
Serial.println(TICKS_HIGH(desired_us + MARK_EXCESS), DEC);
return measured_ticks >= TICKS_LOW(desired_us + MARK_EXCESS) && measured_ticks <= TICKS_HIGH(desired_us + MARK_EXCESS);
}
int MATCH_SPACE(int measured_ticks, int desired_us) {
Serial.print("Testing space ");
Serial.print(measured_ticks * USECPERTICK, DEC);
Serial.print(" vs ");
Serial.print(desired_us, DEC);
Serial.print(": ");
Serial.print(TICKS_LOW(desired_us - MARK_EXCESS), DEC);
Serial.print(" <= ");
Serial.print(measured_ticks, DEC);
Serial.print(" <= ");
Serial.println(TICKS_HIGH(desired_us - MARK_EXCESS), DEC);
return measured_ticks >= TICKS_LOW(desired_us - MARK_EXCESS) && measured_ticks <= TICKS_HIGH(desired_us - MARK_EXCESS);
}
#endif
void IRsend::sendNEC(unsigned long data, int nbits)
{
enableIROut(38);
mark(NEC_HDR_MARK);
space(NEC_HDR_SPACE);
for (int i = 0; i < nbits; i++) {
if (data & TOPBIT) {
mark(NEC_BIT_MARK);
space(NEC_ONE_SPACE);
}
else {
mark(NEC_BIT_MARK);
space(NEC_ZERO_SPACE);
}
data <<= 1;
}
mark(NEC_BIT_MARK);
space(0);
}
void IRsend::sendSony(unsigned long data, int nbits) {
enableIROut(40);
mark(SONY_HDR_MARK);
space(SONY_HDR_SPACE);
data = data << (32 - nbits);
for (int i = 0; i < nbits; i++) {
if (data & TOPBIT) {
mark(SONY_ONE_MARK);
space(SONY_HDR_SPACE);
}
else {
mark(SONY_ZERO_MARK);
space(SONY_HDR_SPACE);
}
data <<= 1;
}
}
void IRsend::sendRaw(unsigned int buf[], int len, int hz)
{
enableIROut(hz);
for (int i = 0; i < len; i++) {
if (i & 1) {
space(buf[i]);
}
else {
mark(buf[i]);
}
}
space(0); // Just to be sure
}
// Note: first bit must be a one (start bit)
void IRsend::sendRC5(unsigned long data, int nbits)
{
enableIROut(36);
data = data << (32 - nbits);
mark(RC5_T1); // First start bit
space(RC5_T1); // Second start bit
mark(RC5_T1); // Second start bit
for (int i = 0; i < nbits; i++) {
if (data & TOPBIT) {
space(RC5_T1); // 1 is space, then mark
mark(RC5_T1);
}
else {
mark(RC5_T1);
space(RC5_T1);
}
data <<= 1;
}
space(0); // Turn off at end
}
// Caller needs to take care of flipping the toggle bit
void IRsend::sendRC6(unsigned long data, int nbits)
{
enableIROut(36);
data = data << (32 - nbits);
mark(RC6_HDR_MARK);
space(RC6_HDR_SPACE);
mark(RC6_T1); // start bit
space(RC6_T1);
int t;
for (int i = 0; i < nbits; i++) {
if (i == 3) {
// double-wide trailer bit
t = 2 * RC6_T1;
}
else {
t = RC6_T1;
}
if (data & TOPBIT) {
mark(t);
space(t);
}
else {
space(t);
mark(t);
}
data <<= 1;
}
space(0); // Turn off at end
}
void IRsend::mark(int time) {
// Sends an IR mark for the specified number of microseconds.
// The mark output is modulated at the PWM frequency.
TCCR2A |= _BV(COM2B1); // Enable pin 3 PWM output
delayMicroseconds(time);
}
/* Leave pin off for time (given in microseconds) */
void IRsend::space(int time) {
// Sends an IR space for the specified number of microseconds.
// A space is no output, so the PWM output is disabled.
TCCR2A &= ~(_BV(COM2B1)); // Disable pin 3 PWM output
delayMicroseconds(time);
}
void IRsend::enableIROut(int khz) {
// Enables IR output. The khz value controls the modulation frequency in kilohertz.
// The IR output will be on pin 3 (OC2B).
// This routine is designed for 36-40KHz; if you use it for other values, it's up to you
// to make sure it gives reasonable results. (Watch out for overflow / underflow / rounding.)
// TIMER2 is used in phase-correct PWM mode, with OCR2A controlling the frequency and OCR2B
// controlling the duty cycle.
// There is no prescaling, so the output frequency is 16MHz / (2 * OCR2A)
// To turn the output on and off, we leave the PWM running, but connect and disconnect the output pin.
// A few hours staring at the ATmega documentation and this will all make sense.
// See my Secrets of Arduino PWM at http://arcfn.com/2009/07/secrets-of-arduino-pwm.html for details.
// Disable the Timer2 Interrupt (which is used for receiving IR)
TIMSK2 &= ~_BV(TOIE2); //Timer2 Overflow Interrupt
pinMode(3, OUTPUT);
digitalWrite(3, LOW); // When not sending PWM, we want it low
// COM2A = 00: disconnect OC2A
// COM2B = 00: disconnect OC2B; to send signal set to 10: OC2B non-inverted
// WGM2 = 101: phase-correct PWM with OCRA as top
// CS2 = 000: no prescaling
TCCR2A = _BV(WGM20);
TCCR2B = _BV(WGM22) | _BV(CS20);
// The top value for the timer. The modulation frequency will be SYSCLOCK / 2 / OCR2A.
OCR2A = SYSCLOCK / 2 / khz / 1000;
OCR2B = OCR2A / 3; // 33% duty cycle
}
IRrecv::IRrecv(int recvpin)
{
irparams.recvpin = recvpin;
irparams.blinkflag = 0;
}
// initialization
void IRrecv::enableIRIn() {
// setup pulse clock timer interrupt
TCCR2A = 0; // normal mode
//Prescale /8 (16M/8 = 0.5 microseconds per tick)
// Therefore, the timer interval can range from 0.5 to 128 microseconds
// depending on the reset value (255 to 0)
cbi(TCCR2B,CS22);
sbi(TCCR2B,CS21);
cbi(TCCR2B,CS20);
//Timer2 Overflow Interrupt Enable
sbi(TIMSK2,TOIE2);
RESET_TIMER2;
sei(); // enable interrupts
// initialize state machine variables
irparams.rcvstate = STATE_IDLE;
irparams.rawlen = 0;
// set pin modes
pinMode(irparams.recvpin, INPUT);
}
// enable/disable blinking of pin 13 on IR processing
void IRrecv::blink13(int blinkflag)
{
irparams.blinkflag = blinkflag;
if (blinkflag)
pinMode(BLINKLED, OUTPUT);
}
// TIMER2 interrupt code to collect raw data.
// Widths of alternating SPACE, MARK are recorded in rawbuf.
// Recorded in ticks of 50 microseconds.
// rawlen counts the number of entries recorded so far.
// First entry is the SPACE between transmissions.
// As soon as a SPACE gets long, ready is set, state switches to IDLE, timing of SPACE continues.
// As soon as first MARK arrives, gap width is recorded, ready is cleared, and new logging starts
ISR(TIMER2_OVF_vect)
{
RESET_TIMER2;
uint8_t irdata = (uint8_t)digitalRead(irparams.recvpin);
irparams.timer++; // One more 50us tick
if (irparams.rawlen >= RAWBUF) {
// Buffer overflow
irparams.rcvstate = STATE_STOP;
}
switch(irparams.rcvstate) {
case STATE_IDLE: // In the middle of a gap
if (irdata == MARK) {
if (irparams.timer < GAP_TICKS) {
// Not big enough to be a gap.
irparams.timer = 0;
}
else {
// gap just ended, record duration and start recording transmission
irparams.rawlen = 0;
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_MARK;
}
}
break;
case STATE_MARK: // timing MARK
if (irdata == SPACE) { // MARK ended, record time
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_SPACE;
}
break;
case STATE_SPACE: // timing SPACE
if (irdata == MARK) { // SPACE just ended, record it
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_MARK;
}
else { // SPACE
if (irparams.timer > GAP_TICKS) {
// big SPACE, indicates gap between codes
// Mark current code as ready for processing
// Switch to STOP
// Don't reset timer; keep counting space width
irparams.rcvstate = STATE_STOP;
}
}
break;
case STATE_STOP: // waiting, measuring gap
if (irdata == MARK) { // reset gap timer
irparams.timer = 0;
}
break;
}
if (irparams.blinkflag) {
if (irdata == MARK) {
PORTB |= B00100000; // turn pin 13 LED on
}
else {
PORTB &= B11011111; // turn pin 13 LED off
}
}
}
void IRrecv::resume() {
irparams.rcvstate = STATE_IDLE;
irparams.rawlen = 0;
}
// Decodes the received IR message
// Returns 0 if no data ready, 1 if data ready.
// Results of decoding are stored in results
int IRrecv::decode(decode_results *results) {
results->rawbuf = irparams.rawbuf;
results->rawlen = irparams.rawlen;
if (irparams.rcvstate != STATE_STOP) {
return ERR;
}
#ifdef DEBUG
Serial.println("Attempting NEC decode");
#endif
if (decodeNEC(results)) {
return DECODED;
}
#ifdef DEBUG
Serial.println("Attempting Sony decode");
#endif
if (decodeSony(results)) {
return DECODED;
}
#ifdef DEBUG
Serial.println("Attempting RC5 decode");
#endif
if (decodeRC5(results)) {
return DECODED;
}
#ifdef DEBUG
Serial.println("Attempting RC6 decode");
#endif
if (decodeRC6(results)) {
return DECODED;
}
// decodeHash returns a hash on any input.
// Thus, it needs to be last in the list.
// If you add any decodes, add them before this.
if (decodeHash(results)) {
return DECODED;
}
// Throw away and start over
resume();
return ERR;
}
long IRrecv::decodeNEC(decode_results *results) {
long data = 0;
int offset = 1; // Skip first space
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], NEC_HDR_MARK)) {
return ERR;
}
offset++;
// Check for repeat
if (irparams.rawlen == 4 &&
MATCH_SPACE(results->rawbuf[offset], NEC_RPT_SPACE) &&
MATCH_MARK(results->rawbuf[offset+1], NEC_BIT_MARK)) {
results->bits = 0;
results->value = REPEAT;
results->decode_type = NEC;
return DECODED;
}
if (irparams.rawlen < 2 * NEC_BITS + 4) {
return ERR;
}
// Initial space
if (!MATCH_SPACE(results->rawbuf[offset], NEC_HDR_SPACE)) {
return ERR;
}
offset++;
for (int i = 0; i < NEC_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset], NEC_BIT_MARK)) {
return ERR;
}
offset++;
if (MATCH_SPACE(results->rawbuf[offset], NEC_ONE_SPACE)) {
data = (data << 1) | 1;
}
else if (MATCH_SPACE(results->rawbuf[offset], NEC_ZERO_SPACE)) {
data <<= 1;
}
else {
return ERR;
}
offset++;
}
// Success
results->bits = NEC_BITS;
results->value = data;
results->decode_type = NEC;
return DECODED;
}
long IRrecv::decodeSony(decode_results *results) {
long data = 0;
if (irparams.rawlen < 2 * SONY_BITS + 2) {
return ERR;
}
int offset = 1; // Skip first space
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], SONY_HDR_MARK)) {
return ERR;
}
offset++;
while (offset + 1 < irparams.rawlen) {
if (!MATCH_SPACE(results->rawbuf[offset], SONY_HDR_SPACE)) {
break;
}
offset++;
if (MATCH_MARK(results->rawbuf[offset], SONY_ONE_MARK)) {
data = (data << 1) | 1;
}
else if (MATCH_MARK(results->rawbuf[offset], SONY_ZERO_MARK)) {
data <<= 1;
}
else {
return ERR;
}
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < 12) {
results->bits = 0;
return ERR;
}
results->value = data;
results->decode_type = SONY;
return DECODED;
}
// Gets one undecoded level at a time from the raw buffer.
// The RC5/6 decoding is easier if the data is broken into time intervals.
// E.g. if the buffer has MARK for 2 time intervals and SPACE for 1,
// successive calls to getRClevel will return MARK, MARK, SPACE.
// offset and used are updated to keep track of the current position.
// t1 is the time interval for a single bit in microseconds.
// Returns -1 for error (measured time interval is not a multiple of t1).
int IRrecv::getRClevel(decode_results *results, int *offset, int *used, int t1) {
if (*offset >= results->rawlen) {
// After end of recorded buffer, assume SPACE.
return SPACE;
}
int width = results->rawbuf[*offset];
int val = ((*offset) % 2) ? MARK : SPACE;
int correction = (val == MARK) ? MARK_EXCESS : - MARK_EXCESS;
int avail;
if (MATCH(width, t1 + correction)) {
avail = 1;
}
else if (MATCH(width, 2*t1 + correction)) {
avail = 2;
}
else if (MATCH(width, 3*t1 + correction)) {
avail = 3;
}
else {
return -1;
}
(*used)++;
if (*used >= avail) {
*used = 0;
(*offset)++;
}
#ifdef DEBUG
if (val == MARK) {
Serial.println("MARK");
}
else {
Serial.println("SPACE");
}
#endif
return val;
}
long IRrecv::decodeRC5(decode_results *results) {
if (irparams.rawlen < MIN_RC5_SAMPLES + 2) {
return ERR;
}
int offset = 1; // Skip gap space
long data = 0;
int used = 0;
// Get start bits
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return ERR;
if (getRClevel(results, &offset, &used, RC5_T1) != SPACE) return ERR;
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return ERR;
int nbits;
for (nbits = 0; offset < irparams.rawlen; nbits++) {
int levelA = getRClevel(results, &offset, &used, RC5_T1);
int levelB = getRClevel(results, &offset, &used, RC5_T1);
if (levelA == SPACE && levelB == MARK) {
// 1 bit
data = (data << 1) | 1;
}
else if (levelA == MARK && levelB == SPACE) {
// zero bit
data <<= 1;
}
else {
return ERR;
}
}
// Success
results->bits = nbits;
results->value = data;
results->decode_type = RC5;
return DECODED;
}
long IRrecv::decodeRC6(decode_results *results) {
if (results->rawlen < MIN_RC6_SAMPLES) {
return ERR;
}
int offset = 1; // Skip first space
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], RC6_HDR_MARK)) {
return ERR;
}
offset++;
if (!MATCH_SPACE(results->rawbuf[offset], RC6_HDR_SPACE)) {
return ERR;
}
offset++;
long data = 0;
int used = 0;
// Get start bit (1)
if (getRClevel(results, &offset, &used, RC6_T1) != MARK) return ERR;
if (getRClevel(results, &offset, &used, RC6_T1) != SPACE) return ERR;
int nbits;
for (nbits = 0; offset < results->rawlen; nbits++) {
int levelA, levelB; // Next two levels
levelA = getRClevel(results, &offset, &used, RC6_T1);
if (nbits == 3) {
// T bit is double wide; make sure second half matches
if (levelA != getRClevel(results, &offset, &used, RC6_T1)) return ERR;
}
levelB = getRClevel(results, &offset, &used, RC6_T1);
if (nbits == 3) {
// T bit is double wide; make sure second half matches
if (levelB != getRClevel(results, &offset, &used, RC6_T1)) return ERR;
}
if (levelA == MARK && levelB == SPACE) { // reversed compared to RC5
// 1 bit
data = (data << 1) | 1;
}
else if (levelA == SPACE && levelB == MARK) {
// zero bit
data <<= 1;
}
else {
return ERR; // Error
}
}
// Success
results->bits = nbits;
results->value = data;
results->decode_type = RC6;
return DECODED;
}
/* -----------------------------------------------------------------------
* hashdecode - decode an arbitrary IR code.
* Instead of decoding using a standard encoding scheme
* (e.g. Sony, NEC, RC5), the code is hashed to a 32-bit value.
*
* The algorithm: look at the sequence of MARK signals, and see if each one
* is shorter (0), the same length (1), or longer (2) than the previous.
* Do the same with the SPACE signals. Hszh the resulting sequence of 0's,
* 1's, and 2's to a 32-bit value. This will give a unique value for each
* different code (probably), for most code systems.
*
* http://arcfn.com/2010/01/using-arbitrary-remotes-with-arduino.html
*/
// Compare two tick values, returning 0 if newval is shorter,
// 1 if newval is equal, and 2 if newval is longer
// Use a tolerance of 20%
int IRrecv::compare(unsigned int oldval, unsigned int newval) {
if (newval < oldval * .8) {
return 0;
}
else if (oldval < newval * .8) {
return 2;
}
else {
return 1;
}
}
// Use FNV hash algorithm: http://isthe.com/chongo/tech/comp/fnv/#FNV-param
#define FNV_PRIME_32 16777619
#define FNV_BASIS_32 2166136261
/* Converts the raw code values into a 32-bit hash code.
* Hopefully this code is unique for each button.
* This isn't a "real" decoding, just an arbitrary value.
*/
long IRrecv::decodeHash(decode_results *results) {
// Require at least 6 samples to prevent triggering on noise
if (results->rawlen < 6) {
return ERR;
}
long hash = FNV_BASIS_32;
for (int i = 1; i+2 < results->rawlen; i++) {
int value = compare(results->rawbuf[i], results->rawbuf[i+2]);
// Add value into the hash
hash = (hash * FNV_PRIME_32) ^ value;
}
results->value = hash;
results->bits = 32;
results->decode_type = UNKNOWN;
return DECODED;
}
/* Sharp and DISH support by Todd Treece
The Dish send function needs to be repeated 4 times and the Sharp function
has the necessary repeats built in. I know that it's not consistent,
but I don't have the time to update my code.
Here are the LIRC files that I found that seem to match the remote codes
from the oscilloscope:
Sharp LCD TV:
http://lirc.sourceforge.net/remotes/sharp/GA538WJSA
DISH NETWORK (echostar 301):
http://lirc.sourceforge.net/remotes/echostar/301_501_3100_5100_58xx_59xx
For the DISH codes, only send the last for characters of the hex.
i.e. use 0x1C10 instead of 0x0000000000001C10 which is listed in the
linked LIRC file.
*/
void IRsend::sendSharp(unsigned long data, int nbits) {
unsigned long invertdata = data ^ SHARP_TOGGLE_MASK;
enableIROut(38);
for (int i = 0; i < nbits; i++) {
if (data & 0x4000) {
mark(SHARP_BIT_MARK);
space(SHARP_ONE_SPACE);
}
else {
mark(SHARP_BIT_MARK);
space(SHARP_ZERO_SPACE);
}
data <<= 1;
}
mark(SHARP_BIT_MARK);
space(SHARP_ZERO_SPACE);
delay(46);
for (int i = 0; i < nbits; i++) {
if (invertdata & 0x4000) {
mark(SHARP_BIT_MARK);
space(SHARP_ONE_SPACE);
}
else {
mark(SHARP_BIT_MARK);
space(SHARP_ZERO_SPACE);
}
invertdata <<= 1;
}
mark(SHARP_BIT_MARK);
space(SHARP_ZERO_SPACE);
delay(46);
}
void IRsend::sendDISH(unsigned long data, int nbits)
{
enableIROut(56);
mark(DISH_HDR_MARK);
space(DISH_HDR_SPACE);
for (int i = 0; i < nbits; i++) {
if (data & DISH_TOP_BIT) {
mark(DISH_BIT_MARK);
space(DISH_ONE_SPACE);
}
else {
mark(DISH_BIT_MARK);
space(DISH_ZERO_SPACE);
}
data <<= 1;
}
}